The Theory of Economic Growth

Economic Growth

• The Importance of Economic Growth
 – Growth of real GDP per capita
 • A measure of standards of living
 • Small changes make large differences over long periods of time
 – The causes and consequences of sustained increases in natural real GDP per capital
 • Debates over the allocating the pie when it is growing rapidly versus slowly
Economic Growth

• Standards of Living as the Consequence of Economic Growth
 – The Poor United Kingdom
 – Economic Growth: Something for Nothing?

--

Economic Growth

• The Production Functions & Growth
 – Introduction to Neoclassical Theory
 • Output growth comes from 2 components:
 – Growth in factor inputs
 – Growth in output relative to growth in factor inputs
 – The Production Function
 • The production function is the relationship between:
 – Output, Y
 – Autonomous growth factor, A, and
 – Factor inputs, K and N

\[Y = A \times F (K , N) \]
Economic Growth

• The Production Function & Growth (con’t)
 – Output per Person and the Capital-Labor Ratio
 \[\frac{Y}{N} = A \cdot f \left(\frac{K}{N} \right) \]
 • Only 2 sources of growth in output per capita
 – Autonomous growth factor, A, assumed to be fixed
 – Ratio of capital to labor, \(\frac{K}{N} \),
 » Figure 9-1
 » Subject to diminishing returns
 • Reveals sources of growth but does not explain why they are different between countries or over time.
 – Also why \(A(0) \) rather than \(A(1) \)

Figure 9-1
A Production Function Relating per Person Output to per Person Capital Input
Economic Growth

• The Production Function & Growth (con’t)
 – Saving, Investment, and the Growth in Capital per Person
 • Savings
 \[S + (T - G) = I + NX \]
 or
 \[S(n) = I \]
 assuming \(NX = 0 \)

Economic Growth

• The Production Function & Growth (con’t)
 – Saving, Investment, and the Growth in Capital per Person (continued)
 • Investment
 \[I = \Delta K + d \times K \]
 where \(d \) = average depreciation rate
 Now \(I = (K \times \Delta K / K) + d \times K \)
 or \(I = (\Delta K / K + d) \times K \)
 or \(I = (k + d) \times K \)
Economic Growth

• The Production Function & Growth (con’t)
 – Saving and Investment in the Steady State
 • A steady state occurs when Y and K grow at the same rate, implying a fixed ratio of Y to K
 • Requires
 \[y = k = n \text{ with } A = A(0) \]

• When these conditions are true economy stays at a fixed position on the per capita production function

• The Production Function & Growth (con’t)
 – Saving & Investment in the Steady State (con’t)
 • Now
 \[
 I = \left\{ \left(\frac{\delta K}{K} \right) + d \right\} K \\
 I = (k + d) K \\
 I = (n + d) K
 \]
 because $S = I$
 \[
 S = (n + d) K
 \]
Economic Growth

• The Production Function & Growth (con’t)
 – Saving & Investment in the Steady State (con’t)
 If we define
 \[s = \frac{S}{Y} \]
 then
 \[s \left(\frac{Y}{K} \right) = n + d \]
 • Savings per unit of capital must equal the growth rate of labor input plus the depreciation rate
 • This is the amount of steady state investment per unit of capital

Economic Growth

• Solow’s Theory of Economic Growth
 – The Harrod-Domar model of economic growth keeps all of these variables constant
 • But each variable is determined by very different factors

 – Solow flipped the equation
 » multiply through by \(K \) then divide through by \(N \)

 \[s \left(\frac{Y}{N} \right) = \left(n + d \right) \left(\frac{K}{N} \right) \]
Economic Growth

• Solow’s Theory of Growth (continued)

National savings per person,
\[s \times \left(\frac{Y}{N} \right) \]

=

Steady-state investment per person,
\[(n + d) \times \left(\frac{K}{N} \right) \]

– that is how much capital is needed for each additional worker plus how much capital is needed to replace depreciation

Economic Growth

• Solow’s Theory of Growth (continued)

– Graphically

• Per person production function and per person savings function
 » Figure 9 - 2 a

• Steady-state investment per person
 » Figure 9 - 2 b

• Equilibrium
 » Figure 9 - 3
 – Disequilibrium dynamics
Figure 9-2
Output, Saving, and Steady-State Investment per Person

Figure 9-3
Equilibrium of Saving and Investment in the Solow Growth Model
Economic Growth

- Solow’s Theory of Growth (continued)
 - Effects of a Higher Saving Rate
 - Figure 9-4
 - Equilibrium moves from E(0) to E(1)
 - At E(1)
 - $K(1) / N(1) > K(0) / N(0)$
 - S / N and Y / N are fixed
 - $y = k = n$
 - A rise in the saving rate temporary increase y as I rises enough to raise K and Y / N but then $y = k = n$
 - Long-run versus short-run dilemma

Figure 9-4
The Effect of a Higher Saving Rate on Capital and Income per Person
Economic Growth

- Technology in Theory and Practice
 - Two Types of Technological Change
 - Labor Augmenting Technological Change
 - Makes workers more efficient
 - Effective labor input
 - Neutral Technological Change
 - Makes both workers and capital more efficient
 - Implies autonomous growth factor, A, increase over time
 - Implies production function shifts upward steadily

- The “Solow Residual”
 - We can measure “a” from
 \[y - n = a + b \times (k - n) \]
 - by solving for “a”
 \[a = (y - n) - b \times (k - n) \]
 - since y, n, and k can be observed and b can be estimated
 - “a” accounts for nearly 90% of \(\frac{y}{n}\)
Economic Growth

• Major Puzzles with Solow Growth Theory
 – Income per capita varies too much across countries
 – Poor countries do not have a higher rate of return on capital
 – The facts about immigration differ from the model’s implications
 – Convergence has not been uniform

Figure 9-5
A Production Function Relating Per-Person Output to Per-Person Capital Input
Economic Growth

• Endogenous Growth Theory
 – Trying to Endogenize “A”

 – The Interpretation of Capital
 • Returns to capital do not diminish
 – Still a problem is all capital is alike and freely mobile
 • Human capital versus physical capital
 – Physical capital may be mobile but human capital is not

Economic Growth

• Endogenous Growth Theory (continued)
 – The Production of Ideas
 • Rely by monopoly power reinforced by patents and copyrights
 • The concept of ideas helps explain
 – The introduction of new goods
 – The development of better production techniques
 – The development of higher quality
 » Rich countries use ideas and techniques that produce more and better goods per person.
 » Requires the associated investment in physical and human capital
Economic Growth

• Endogenous Growth Theory (continued)
 – Empirical Studies and Policy Implications
 • Faster growth is associated with
 – higher rates of investment
 » either private or government sector
 – relatively low government consumption
 – greater educational attainment
 – greater political stability
 – lower fertility
 • Policy Implications
 – Tax private consumption, restrain public consumption
 – Promote public and private investment

Economic Growth

• CASE STUDY:
 The Economic Miracle of the Four Tigers
 – Growth rates, 1960 - 1990
 • Philippines, about 2% per year
 • China, Japan, Indonesia, Malaysia, Thailand, 3 - 5%
 • Hong Kong, Korea, Taiwan, Singapore, > 6%
 » Figure 9 - 6
Economic Growth

• CASE STUDY: The Economic Miracle of the Four Tigers (continued)
 – Growth in Factor Inputs or in Multifactor Productivity?
 • Extensive growth, growth in factor inputs
 – Rapid capital accumulation
 – Rapid increase in labor force
 • Intensive growth, growth in multifactor productivity
 – Very strong
 • Conclusion: both
Economic Growth

• CASE STUDY:

The Economic Miracle of the Four Tigers
 – Did Public Policy Play a Role?
 • Market-promoting policies
 – Encourage free markets, minimize government
 – Provide infrastructure
 – Promote education and income equality
 – Encourage foreign investment and exports
 • Market-interfering policies
 – Subsidies to investment and exports
 – Import barriers and capital controls

Economic Growth

• CASE STUDY:

The Economic Miracle of the Four Tigers
 – Should Policy Promote Investment and Exports?
Economic Growth

• Conclusion: Are There Secrets of Growth?
 – Probably not but
 • A favorable institutional infrastructure
 • Political and social stability
 • “Capital” deepening
 • Minimizing diversion
 • Openness to foreign trade and capital flows
 • Climate
 • Luck
 – We still have a lot to learn