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I. INTRODUCTION

Market impact measures the expected price change induced by initiating a trade1. One
of the puzzles of finance is that the market impact as a function of trading volume has a
highly concave functional form, i.e. its derivative is a decreasing function of volume. This
is widely assumed to reflect the diverse information present in trades of different sizes, e.g.
because skilled professionals make intermediate to small trades while less skilled participants
use an assortment of different sizes. In this paper we present an alternate point of view,
arguing that the changes in the informativeness are driven by correlations in order flow,
which are in turn driven by heavy tails in the size of large transactions. Under our view,
while the concave form of impact does indeed depend on participant information, it has
little or nothing to do with their identity.

Understanding market impact is important conceptually for what it tells us about the
aggregation of information about trades into prices, and also for what it tells us about the
underlying behavior of supply and demand. It is closely related to the demand elasticity of
price, originally introduced by Alfred Marshall2. Knowing the market impact does not allow
one to compute absolute price levels, but it does make it possible to answer the hypothetical
question, “How much would I move the price if I were to make a trade?”.

From an information point of view trades should be informative, in the sense that in
a world in which each agent has different information, a trade and its incorporation into
the price make this information public (Grossman and Stiglitz, 1980). One of our main
accomplishments here is in developing a theory for how information about order flow is
incorporated into prices. We explore two different models for predicting order flow and
show that these lead to different functional forms for market impact. This has implications
for market design, since our results imply that by controlling what information is made
available during trading market designers can exert control over market impact.

Understanding market impact also has important practical implications. Practitioners
care about understanding market impact because it reduces profits. Since market impact
increases with trading size it places a limit on fund size. By adversely moving the prices at
which transactions are made, impact can turn a profitable strategy into a losing strategy.
This is the reason why savvy hedge funds close once they reach a critical size. The functional
form matters: If market impact increases rapidly with volume, a fund’s size is severely
limited; if it increases slowly, the fund can grow much larger. Practitioners work hard to
minimize market impact, and optimal algorithms for doing this are a topic of active research
(Almgren and Chriss, 2000, 1999, Almgren, 2003). We give insight into the functional form
that should be optimized and show that other properties such as the trading velocity are
also important. Of course liquidity in markets varies enormously depending on context
(see e.g. Gillemot, Farmer and Lillo, 2006), but what we are interested in here is how the
predictability of order flow affects the market impact of transactions, averaged over different
market conditions.

1 “Initiation” refers to the party who is immediately responsible for a trade taking place. For example in a
continuous double auction the initiating party is the one who places the order that causes an immediate
transaction. This can also be defined in other market structures where actions are taken sequentially.

2 For asynchronous market clearing, in which parties change their supply or demand functions one at a
time, it is possible to show that the market impact for a series of trades is linearly proportional to the
demand elasticity of price averaged over a sequence of trades (Farmer, Gerig and Lillo, in progress).
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The functional form of market impact is one of the unexplained puzzles in finance. There
have been many empirical studies of market impact3. All of them have observed a concave
function of trading volume, i.e. the derivative is a decreasing function. The functional forms
that have been reported to give a good fit to the data vary from study to study. We believe
that much of this variation comes about because these studies in fact measure different
things. Some of them measure the market impact of a single trade made in an order book,
some measure the aggregate impact of sequential trades in an order book, some of them
measure block trades, and many of them measure a mixture of all three. We believe that
these are quite different and need to be analyzed separately. This paper is one of a series in
which we develop theories for market impact for each of the above cases.

In this paper we focus on understanding how the predictability of order signs affects the
total market impact of large trades that are executed sequentially in small pieces. Such
trades are called trading packages or hidden orders, and the individual small pieces via
which they are executed will be called realized orders. The strategic reasons for incremental
execution were originally analyzed by Kyle (1985), who developed an idealized model with
three types of traders: noise traders, who buy or sell a random quantity, a monopolist with
inside information, and market makers who buy and sell at prices that keep the market
efficient. He showed that in order to maximize profits the insider will split her trade into
pieces and information will be gradually incorporated into the price as each piece is traded.

Our approach is complementary to Kyle’s, and differs both in its goals and in the con-
struction of the model. Our purpose is to compute the functional form of market impact
based on empirically observable assumptions, taking the strategic motivations for order split-
ting as a given. The model contains only two types of traders, liquidity takers and liquidity
providers. The liquidity takers are noise traders who decide to buy or sell at random, pick-
ing a random size V for their hidden orders from a known distribution P (V ). They split
up V into small pieces v̄ and trade incrementally at a constant rate, independent of V .
Liquidity providers set prices so as to maintain market efficiency. To do this they have to
compensate for the fact that, depending on P (V ), the incremental trading by noise traders
induces positive autocorrelations in order flow. The need to maintain the price process as
a martingale forces price responses to be asymmetric, i.e. the price response to buy orders
must be different than that for sell orders. The asymmetry varies depending on the number
of hidden orders, their signs, and their stage of execution. The predictability of order flow
depends on P (V ), and as a result the concavity of the impact depends on the tail behavior
of P (V ). The functional form of market impact also depends on the information available
to liquidity providers for predicting order flow; we investigate two different information sets
and show how they affect market impact.

Our theory stresses the consequences of the predictability of order flow for price formation.
This was presaged by Hasbrouck’s (1988, 1991) observation that only the unpredictable
component of order flow can affect market impact4. The release of information enabling

3 Empirical studies of market impact include Holthausen, Leftwich and Mayers (1987, 1990), Hasbrouck
(1991), Hausman, Lo and MacKinlay (1992), Keim and Madhavan (1996), Torre (1997), Kempf and Korn
(1999), Plerou et al. (2002), Evans and Lyons (2002), Lillo, Farmer, and Mantegna (2003), Potters and
Bouchaud (2003), Gabaix et al. (2003, 2006), Chordia and Subrahmanyam 2004, Farmer, Patelli and
Zovko (2005), Weber and Rosenow (2006), and Hopman (2006).

4 Other price formation models that have made use of the need to enforce efficiency under predictable order
flow include Garbade and Silber (1979), Roll (1984), Glosten and Milgrom (1985), Choi, Salandro and



5

its predictability should also affect stock prices, although this is more difficult to quantify.
Order flow is highly predictable. Positive serial autocorrelation of signed order flow has been
observed by many authors in many different markets, including the Paris Bourse (Biais,
Hillion and Spratt, 1995), foreign exchange markets (Danielsson and Payne, 2001), and the
NYSE [Ellul et al. (2005), Yeo (2006)]. These papers only studied the first autocorrelation,
but this is only a small part of the story. For stocks in the London, Paris, and New York stock
exchanges, the signs of trades in stock markets obey a long-memory process5 [Bouchaud et
al. (2004), Lillo and Farmer (2004)]. Typically all the coefficients of the autocorrelation
function are positive at statistically significant levels out to lags of more than a thousand.
The predictability of order flow is dramatic, and as stressed by Bouchaud et al. and Lillo and
Farmer, would produce a serious violation of market efficiency if it weren’t compensated for
in price formation. Bouchaud et al. (2004, 2006) have shown how this affects the permanence
of price impact; here we show how it also influences its dependence on trade size. We also
show that the permanence of impact depends on the information available for predicting
order flow.

We are not the first to model the price impact of large trades. Keim and Madhavan
(1996) modeled block trades based on the cost of searching for counter-parties, and under
the assumption that this increased as a power law in the number of counter-parties, derived
a power law impact function. Evans and Lyons (2002) developed a theory for interdealer
and public trading, and under the assumption that the public’s demand function is linear
derived a linear impact function. Gabaix et al. (2003, 2006) assumed that block traders
have an additive risk aversion term in their utility function of the form Vδ/2, where V is
the variance of their profits. Under the assumption of utility maximization and a random
walk for prices, they showed that the impact of large trades should scale as V δ/2, where V
is the trading volume. If δ = 1, i.e. first order risk aversion, their theory predicts impact
increases as the square root of volume, but with the more commonly used δ = 2 it predicts a
linear impact. These theories add insight, but in each case the functional form of the answer
depends on an arbitrary functional form assumed in setting up the model. Our approach
instead makes assumptions about the functional form of the volume distribution and the
information available for predicting order flow. These have the important advantage that
they can be inferred directly from empirical data.

We also provide preliminary empirical tests of our model. Empirical studies of the market
impact of hidden orders are difficult to perform because linking realized trades together
requires information about the identity of trading parties. Previous studies by Chan and
Lakonishok (1993, 1995), and Torre (1997) were based on data from a brokerage that made it
possible to explicitly track the orders of each client. Our approach follows the lead of Vaglica
et al. (2007), who have developed a method for reconstructing large orders using information
about brokerage codes. We use data from the London Stock Exchange containing codes
identifying the member of the exchange submitting each trading order, and develop a simple
algorithm for linking together a series of realized trades into underlying hidden orders. This
approach has the disadvantage that it is impossible to classify hidden orders unambiguously,

Shastri (1988), and Stoll (1989) and Madhavan, Richardson and Roomans (1997).
5 A standard example of a long-memory process is a fractionally integrated Brownian motion. We use

the term in its more general sense to mean any process whose autocorrelation function is non-integrable
(Beran, 1994). This can include processes with structure breaks, such as that studied by Ding, Engle and
Granger (1993).
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as there is always the possibility that two parties are trading simultaneously through the
same member of the exchange. In fact we are able to estimate the probability that this
happens, and so estimate the misclassification rate. Our approach has the advantage that
it allows us to classify all trading orders for the whole market, and so gives us more data to
work with than we would have if we were restricted to the clients of a single brokerage.

II. OUTLINE AND OVERVIEW

Because the theory developed here is complicated and has several interlocking pieces, we
present an overview that can also act as a guide for understanding how the sections of the
paper fit together.

In Section III we present the basic set up of the model. Under the assumption that
the predictablity of order flow comes from hidden orders we derive a relationship connecting
the persistence of hidden order flow to the predictability for realized order flow. We then
impose market efficiency and derive the consequences for returns, showing that it means that
expected returns are asymmetric, which is the basic reason that market impact is concave.
As a hidden order develops its probability of continuing increases. This implies that the ratio
of returns of the same sign (as the hidden order) to those of the opposite sign decreases.
Under reasonable assumptions about scale, discussed in the next section, this makes the
market impact concave.

In Section IV we discuss the problem of determining how the scale of returns changes
during the development of a hidden order. The arguments given in Section III determine
the ratio of positive and negative returns but do not determine their scale. We explore the
consequences of assuming that the surprise in order flow is additive, i.e. that the amount
by which the price moves depends on the difference between the observed order sign and
the prediction. We show that this implies that the single transaction impact is linear and
symmetric.

In Section V we address the fact that quantifying the predictability of order flow requires
assumptions about the information and models of market participants. We develop two
different models of predictability that in a certain sense bracket the space of possibilities.
The first assumes that participants use a linear time series model to predict order flow
based on public information about order signs; the second, which we call the “colored print”
model, assumes more detailed information about hidden orders, including the underlying
distribution of their size, the number of hidden orders present and the number of executions
that each order has had so far.

Under assumptions about all the elements discussed above, namely volume distribution,
scale, order flow prediction model, and neglecting quote adjustments resulting from updates
in the order flow predictions, it is possible to derive the market impact function. We do
this for each of the possibilities discussed above. To give an understanding of how the
assumptions affect the results, we also do this for some assumptions that we believe are
counterfactual; for example, we also consider the assumption that the hidden order volume
distribution is a stretched exponential rather than a power law. So, for example, if we assume
the color print model for order flow and constant volatility, an exponential distribution
of hidden order volume leads to a linear market impact function, a stretched exponential
leads to a power law market impact, and a power law hidden order distribution leads to a
logarithmic impact function.

Under the colored print model one must also confront how participants detect the end of
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hidden orders. We show that this substantially modifies the impact and also modifies the
response after the hidden order is finished. In particular this makes it possible to compute
whether the impact is permanent or temporary.

In Section VI we present some preliminary empirical results testing these models. We
first describe the method we use for approximately identifying hidden orders using only
information about exchange membership and discuss the advantages and disadvantages of
this method relative to other possibilities.

Finally in Section VII we summarize and provide a broader perspective on these results,
and discuss future work.

III. MARKET EFFICIENCY AND RETURN ASYMMETRY

As we have already emphasized, the fact that hidden orders are only executed incremen-
tally makes order flow extremely predictable. Enforcing market efficiency imposes strong
constraints on the response of prices and leads to the conclusion that returns must be asym-
metric. In this section we derive a relation between the structure of the hidden order process
and the predictability of order flow. We then impose efficiency and derive a general relation
between the predictability of hidden orders and returns.

For the sake of clarity we develop this theory at a microscopic level, i.e. we formulate the
model at the level of individual transaction-to-transaction returns. This has the disadvantage
of requiring the introduction of details that are not essential to understand the main ideas,
but has the important advantage of making the microscopic mechanisms more explicit and
enabling detailed empirical tests of the theory.

A. Basic set up of the model

Following Lillo, Mike, and Farmer (2005) we assume that all buying and selling decisions
by liquidity takers correspond to hidden orders of size V that are executed through a series
of incremental transactions of size v̄. The signs of their hidden orders, η = +1 for buy and
η = −1 for sell, are chosen at random in an IID manner. Their sizes are drawn from a
distribution P (V ). For convenience we assume that all transactions have the same size v̄
and that hidden orders have discrete sizes V = Nv̄, where N is a positive integer. (This
simplifies the analysis and does not substantially affect any of the conclusions). Though
we are most interested in long hidden orders, they may have lengths as short as N = 1,
and indeed in the examples we will investigate here this is the most common length. All
transactions come from hidden orders and have the same sign as the hidden order they come
from. The sequence of transaction signs εt coming from different hidden orders is called order
flow. We will say that a hidden order is active from the time it is created6 until the time it
is fully executed, i.e. until it has received N executions. M(t) hidden orders can be active
at the same time.

6 For the purposes of this paper we will use empirical data and so don’t need to worry about when new
hidden orders are created – that is given to us from the data. For stochastic process models of hidden
order creation see Lillo, Mike and Farmer.
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While most of our results do not depend on this, for many purposes it is useful to treat the
execution of hidden orders as a Poisson process in which a given active hidden order j has
probability πj of making an incremental transaction on any given timestep. (We will often
drop the subscript j when it is obvious). We will call the Poisson rate πj the participation
rate. Under the Poisson execution model the average time between transactions of a given
order is θj = 1/πj. Since we are using transaction time, θj − 1 is the average number of
intervening transactions coming from other hidden orders. Even though the signs of hidden
orders are IID, depending on P (V ), the incremental transaction of large hidden orders can
cause order flow to be persistent in the sense that it has positive autocorrelations.

As a simplifying assumption we assume that all hidden orders are executed with market
orders. This assumption is valid for a class of algorithms known by practitioners as stealth
algorithms, which are intended to avoid detection by not posting any limit orders, and
almost entirely valid for volume participation strategies that aim to track market volume
and therefore do not accept the uncertainty of execution that results from posting limit
orders. Aggressive trading strategies aiming to capture over 20% of the market liquidity also
execute mostly through market order transactions. The generalization of our arguments to
passive limit order posting strategies lies beyond the scope of this paper.

Although the way in which we measure returns is arbitrary it is necessary to be consistent.
We work in transaction time t, which is incremented according to t → t + 1 every time a
transaction occurs. Prices are measured in terms of the logarithmic midprice p = log(1/2(a+
b)), where a is the best offered selling price (the best ask) and b is the best offered buying
price (the best bid). The logarithmic return rt = pt − pt−1 is measured as the logarithmic
price difference from immediately before a transaction is received until immediately before
the next transaction is received. This means that each return includes the immediate impact
of a transaction followed by an indeterminate number of quote driven price changes until
the next transaction.

It is also useful to measure returns associated with hidden order executions. Let tn be the
time of the nth execution, where n = 1, . . . , N . In order to be able to define the last hidden
order return ρN we will somewhat arbitrarily define tN+1 = tN+θ, where θ = (tN−t1)/(N−1)
for N > 1 and θ = 1 for N = 1. The hidden order return is then ρn = ptn+1 − ptn . Our
notation and our method for defining returns are illustrated in Figure 1.

FIG. 1: Our method of defining returns. Solid bars are transactions of the hidden order and grey
bars are transactions caused by other orders. The thin marks are quotes or cancellations. The
return rt of individual realized transactions is defined from just before a transaction to just before
the next transaction, and the return ρn is defined from just before a transaction of a hidden order
until just before its next transaction.
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B. Price formation for individual incremental transactions

We model the total impact of hidden orders by summing the impacts of each incremental
transaction. Our model for price formation for the incremental transactions is a generaliza-
tion of the model of Madhavan, Richardson and Roomans (MRR, 1997),

pt = pt−1 +K(εt − E[εt|εt−1]) + χt. (1)

pt is the midprice, K is a positive constant, εt is the sign of a transaction, E[εt|εt−1] is the
expected sign given the previous sign, and χt is a noise term that represents the arrival of
new information that is not already contained in order flow. Since −1 ≤ E[εt|εt−1] ≤ 1, the
contribution of a buyer-driven transaction is never negative, and of a seller-driven transaction
is never positive.

We generalize and extend this model in several ways.

• We allow for a more general order flow model ε̂t = Et−1[εt|Ωt−1] to forecast the trans-
action sign εt based on information at time t − 1, where Ω is an information set. As
we make explicit in Section V, examples of possible information sets are a linear time
series model based on order flow or the number of prior executions n for each hidden
order j.

• Since we are interested in the expected impact of hidden orders, for each hidden order

we measure time relative to the time t
(j)
1 of its first transaction. If t′ sequentially labels

all transactions in the temporal order which they occur, for hidden order j the relative

time t(j) = t′ − t(j)1 + 1. (For convenience the argument j will usually be omitted).

• We split the noise term into two pieces, an idiosyncratic noise term ξt(j) that is specific
to hidden order j, and a noise term χt that describes innovations that survive after
averaging over hidden orders.

• The sign of transactions εt is replaced by the variable εt = ηjεt, which indicates whether
the transaction sign agrees with the hidden order sign.

• We allow for a more general nonlinear function F describing the impact of individual
transactions of the form F (εt, ε̂t). F satisfies the conditions that F (x, x) = 0 and it is
increasing in the first argument and decreasing in the second.

With these modifications our single transaction impact model is

pt = pt−1 + ηj [F (εt, ε̂t) + ξt(j) + χt] . (2)

Expectations in our model are averages over hidden orders. The expectations of the id-
iosyncratic noise term ξt(j) are by definition Et−1[ξt(j)] = Et[ξt(j)] = 0, where the subscript
denotes the time when the average is taken. In contrast, the expectations of the systematic
noise term χt are Et−1[χt] = 0 and Et[χt] = χt. In the latter case the expectation is nonzero
because χt is known at time t.

We have substantially generalized the allowed functional form of the impact in two differ-
ent ways. First, we have allowed a general function F rather than the linear form assumed
by MRR. Second, we have allowed it to depend on the observed transaction sign εt and the
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predicted transaction sign ε̂t separately rather than on their difference. We will consider the
latter simplification in Section IV.

For convenience we have implicitly assumed antisymmetry between buying and selling,
i.e. that transactions from buy vs. sell hidden orders generate impacts of the same size but
opposite sign. This is evident from that fact that if we flip the signs of all hidden orders,
sending ηj → −ηj, by definition from the setup of the model in the previous section this
takes εt → −εt, εt remains invariant, and under Eq. 2 we see that rt = pt − pt−1 = −rt.
This is a matter of convenience and parsimony – we could more generally have assumed one
function F for buying and another F ′ for selling. This is easily tested empirically. This
assumption should not be confused with the symmetry properties of F . For example, if F
is a linear as assumed by MRR, then F (−x) = −F (x) and the price response to order flow
is the same but with a negative sign for surprises in order flow with the same sign as the
hidden order as it is for surprises with the opposite sign. This is a much more important
assumption that we will discuss in more detail in Section IV.

For computing the market impact of a given hidden order j it is useful to know the
probability that next transaction will have the same sign or a different sign than the hidden
order. These are defined as

ϕ+
t = P (εt = ηj|Ωt−1),

ϕ−t = P (εt 6= ηj|Ωt−1). (3)

This is simply related to the prediction ε̂t of whether the order flow sign agrees with the
hidden order sign as follows

ε̂t = ηj ε̂t = Et−1[εt = ηj|Ωt−1] = ϕ+
t − ϕ−t = 2ϕ+

t − 1. (4)

C. Consequences of market efficiency on returns

Our strategy is to use efficiency to compute the size of the expected a priori returns
and use this a posteriori to compute the average impact. Using Eq. 2 we can compute the
magnitude of the expected returns at t−1 conditioned on observing that the next order has
a given sign,

r̃+
t = Et−1[rtηj|εt = ηj & Ωt−1] = F (1, ε̂t),

r̃−t = −Et−1[rtηj|εt 6= ηj & Ωt−1] = −F (−1, ε̂t). (5)

While the martingale condition above is naturally formulated in terms of the expected
returns r̃+ and r̃−, they are not observable. This is because they represent expectations
conditioned on information at time t−1 but the returns that can be measured from empirical
data7 also include information at time t. From Eq. 1 the average returns at time t are

r+
t = Et[rtηj|εt = ηj & Ωt] = F (1, ε̂t) + χt,

r−t = −Et[rtηj|εt 6= ηj & Ωt] = −F (−1, ε̂t)− χt. (6)

7 The return at time t includes possible conditioning of order flow by liquidity takers, based on information
at time t.
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The expectations r+ and r− are observable but do not satisfy the efficiency condition exactly
due to the information term χt. If the deviation from efficiency is ϕ+

t r̃
+
t − ϕ−t r̃−t = ∆̃, the

observable inefficiency is
∆t = ∆̃t + χt = ϕ+

t r
+
t − ϕ−t r−t . (7)

We wish to emphasize that the observable inefficiency includes both the inefficiency of prices
with respect to a given order flow model, as well as the informational terms χt, which are
not an inefficiency but rather a direct response to information about order flow that is not
reflected in the prediction model. We have defined the model in this way in order to make
it directly comparable to observations.

When combined with the definition of volatility and the conservation of probability this
gives a simple system of three linear equations. Let ν̃ be a proxy of volatility, which we will
take to be ν̃ = ϕ+r̃+ +ϕ−r̃−. Providing r̃+ and r̃− are both positive ν̃ is the absolute value
of returns.

ϕ+r+ − ϕ−r− = ∆,

ϕ+r+ + ϕ−r− = ν, (8)

ϕ+ + ϕ− = 1.

We stress that all the quantities above can depend on t, so this defines a system of linear
equations for each value of t. In particular the predictability of order flow as measured by
ϕ+
t can vary within a hidden order due to variations in the information set Ω as the order

develops.
We can now solve for the conditional expected returns r+ and r−, which gives

r+ =
ν + ∆

2ϕ+
r− =

ν −∆

2(1− ϕ+)
. (9)

Note that the condition that ν corresponds to the absolute value of returns is met as long
as ν > ∆, which guarantees that r− > 0.

If the market is efficient and χt = 0, then ∆ = 0 and the return asymmetry becomes

r+

r−
=

1− ϕ+

ϕ+
. (10)

This implies that the response r+ to buying orders differs from the response r− to selling
orders. When buy orders are more likely the response to buy orders is smaller, and vice
versa. Solving for ϕ+ and substituting into Eq. 10 gives

r+

r−
=

1− ε̂
1 + ε̂

. (11)

This will be useful later for empirical testing.
There are several market microstructure effects that can produce an asymmetric price

response. Possible causes are (1) a difference in the depth at the bid vs. the offer, (2)
asymmetric liquidity taking, for example because buyers submit smaller market orders than
sellers, or (3) differences between buy and sell quote driven price changes. We suspect that
all of these contribute, but from the point of view of the theory we develop here their relative
contribution is not important.



12

D. Predictability of order flow due to hidden orders

A key assumption that we make here is that the incremental execution of hidden orders is
the dominant cause of the predictability of realized order flow, as proposed by Lillo, Mike and
Farmer (2005). This is of course not the only possible cause of predictability. For example,
Parlour (1998) developed a theory based on strategic considerations that predicts nega-
tive autocorrelations (which is the opposite of what is observed). Lebaron and Yamamoto
(2007) have proposed a theory for positively correlated order flow based on the hypothesis
that market participants imitate one another, which is also called herding. Nonetheless, as
discussed in Section VI, in the stock markets that have been studied we believe the empirical
evidence makes it clear that incremental hidden order execution is the dominant source of
predictability. We will assume that it is the only cause.

We now derive a general relationship relating the predicted order flow imbalance ϕ+ to
the participation rate π and the probability P that the hidden order will continue. The
continuation probability

P(n) = P (N ≤ n|Ωt−1) (12)

is the probability that a hidden order will continue conditioned on information Ωt−1. It is
useful because it links the predictability of order flow to the hidden order process, and can
be computed once we have chosen an information set Ω and fully specified the hidden order
process.

By assumption the signs ηj and ηk of any two hidden orders j and k are independent. For
convenience also assume that the unconditional probabilities of buy and sell orders are the
same; the results are easily generalized to avoid this with an obvious trivial modification of
the results. Suppressing the ubiquitous time indices, this allows us to write ϕ+

t in the form

ϕ+ =
(
π +

1

2
(1− π)

)
P +

1

2
(1− P)

=
1

2
(1 + πP) . (13)

This can understood by examining the first expression, starting with the leftmost term: By
definition the probability that a hidden order continues is P . If it continues then there
is a probability π that it has a transaction (which automatically has the same sign), and
probability 1 − π that another hidden order has a transaction, in which case there is a
probability of one half of having the same sign. The probability that the order does not
continue is 1− P , in which case there is probability one half of having the same sign.

The impact can be computed using Eqs. 13 and 8. Let Jt indicate that hidden order j is
active at time t and J̄t indicate it is inactive. If a hidden order is still active at time t the
expected return is

Et[rt|Jt & Ωt] = ηj

[
πr+ +

1− π
2

(r+ − r−)
]

= ηj

[
νπ(1− P) + ∆(1− π2P)

1− (πP)2

]
. (14)

The middle expression can be interpreted as follows: Assuming hidden order j is a buy order
there is probability π that the transaction at time t is an execution of hidden order j, in
which case by definition the realized order has the same sign and the average return is r+.
There is probability (1 − π) that it is a transaction of some other hidden order, in which
case since hidden order signs are independent there is an equal probability 1/2 for either
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generating a realized buy order with average return r+ or a realized sell order with average
return −r−. If the hidden order is a sell order the factor ηj flips all the signs.

The expected return Et[rt|Jt] is an a posteriori expected return, in the sense that it is
based on information that the hidden order is still active. Thus it is generally not zero.
The size of the expected return is determined by the imbalance between the conditional
expectation r+ for orders of the same sign and r− for orders of the opposite sign.

E. Hidden order vs. transaction returns

In assessing the impact of a hidden order it is convenient to measure its impact in a
natural time frame. We do this in terms of the number of executions n of the hidden
order. We now derive a relation between the expected transaction by transaction returns
Et[rt|Jt & Ωt] and the expected hidden order returns En[ρn|Jn & Ωn]. For this purpose it
is convenient to use the Poisson model of order placement. Letting the stochastic variable
τn = tn+1 − tn be the time interval between hidden order executions we assume that τn is
independent of rt, or alternatively that E[rt|Jt] is roughly constant from tn−1 to tn. Under
the Poisson approximation this gives

En[ρn|Jn & Ωn] =
tn+1+1∑
t=tn+1

Et[rt|Jt & Ωt] = E[τn]Et[rt|Jt & Ωt],

=
∞∑
τ=1

τπ(1− π)τ−1Et[rt|Jt & Ωt],

= θEt[rt|Jt & Ωt], (15)

where θ = 1/π as defined in Section III A. This answer is intuitively pretty obvious – the
return from θ steps is just θ times the return for one step. This is not very sensitive to
the Poisson arrival hypothesis; for example, if we instead assume that hidden orders are
executed at periodic intervals of constant length τn = θ we get the same answer.

F. Predicted market impact

It is now possible to derive a general expression for market impact. We define the total
impact of an hidden order in terms of the total logarithmic return R = ptN−pt1 . Equation 14
is the expected single transaction return. The variables ν, P and ∆ are all single transaction
values, which in general will vary during the course of a hidden order. (We have already
assumed that the participation rate π is a constant). Equation 15 is essentially a statement
that we can regard all of these variables as constant in between executions of the hidden
order. We can thus write ν(n), P(n) and ∆(n) to indicate the values of each of these variables
after n executions of the order. We can then write the a posteriori expected impact E[R|N ]
for a hidden order of length N as

E[R|N ] =
N∑
n=1

En[ρn|Jn & Ωn] = θ
N∑
n=1

Et[rt|Jt & Ωt]

= ηj

[
N∑
n=1

ν(n)
1− P(n)

1− (πP(n))2
+

1

π

N∑
n=1

∆(n)
1− π2P(n)

1− (πP(n))2

]
.

(16)
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As we will demonstrate later, for the stocks we study typically π < 0.1, making it a good
approximation to neglect terms of order π2, since π2 ≤ 0.01 and all the terms with π2 are
subtracted from terms of order one. With this assumption E[R|N ] can be written in the
simple form

E[R|N ] ≈ ηj

[
N∑
n=1

ν(n)(1− P(n)) + θ
N∑
n=1

∆(n)

]
. (17)

In order to actually compute the market impact we have to resolve the two unknown
functions, ν(n) and P(n). The volatility proxy ν(n) can be thought of as the scale of the
returns, and will be discussed in the next section. The continuation probability for hidden
orders, P(n) = P (N ≤ n|Ωt−1), depends on the information set Ω and will be discussed in
Section V. We also have to show that the ∆ term is sufficiently smaller than the other terms
so that it can be neglected. We investigate this question empirically in Section VI F.

IV. THE SCALE OF PRICE RESPONSES TO HIDDEN ORDERS

To compute the impact we have to fix the scale of the returns as the hidden order develops.
This is controlled in our model by the volatility proxy ν(n). Market efficiency by itself is
not sufficient to specify this – an additional assumption is needed.

One possible way to fix the scale is to make the additive assumption that the expected
single transaction impact is of the form

F (εt, ε̂t) = F (εt − ε̂t). (18)

This says that the price change caused by new information in order flow depends only on the
difference between the observed order sign and its prediction. This was assumed by MRR
and many other authors When combined with efficiency this is sufficient to specify F . From
Eq. 5 the martingale condition can be written

Et−1[rt|Ωt−1] = 0,

ϕ+
t r̃

+
t − ϕ−t r̃−t = 0,

ϕ+
t F (1, ε̂t) + ϕ−t F (−1, ε̂t) = 0. (19)

Making use of the relation ε̂t = 2ϕ+
t − 1 and ϕ− = 1− ϕ+ and simplifying the notation by

letting x = ϕ+
t gives the following functional equation for F :

xF (2(1− x)) + (1− x)F (−2x) = 0. (20)

A nonzero solution is F (x) = ν0x, where ν0 is a constant. We thus see that even though we
assumed an apparently general form for the impact, efficiency plus the additivity assumption
forces F to be linear. When this is substituted into the second relation of Eqs. 8 we can
solve for the volatility, giving

ν = ν0[1− (πP)2] + ∆πP . (21)

By using Eq.s (6) we write

r+
t = ν0 − λt

r−t = ν0 + λt.
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where λt = ν0ε̂t − χt. This means that efficiency plus the additivity assumption implies
that the impact is symmetric. This says that the change in the expected return for trades
of the same sign is equal but opposite to the change in the expected return for trades of
the opposite sign. As written above λ can be any increasing function, so this condition
seems quite general. However, this also turns out to imply linearity. Eliminating λ using
the condition for observed market efficiency, Eq. 11, and by assuming one can neglect the
term χ, one gets

r+ = ν0(1− ε̂)
r− = ν0(1 + ε̂). (22)

Notice that the equation above also predicts that the observed expected returns should obey
linear relations with slope ν0.

One of the interesting aspects of Eq. 21 is that the volatility proxy ν varies with n unless
P is constant. This implies that the volatility is coupled to the development of the hidden
order. In particular, if P is an increasing function of n the volatility will decrease as the
hidden order is executed. However, the decrease goes as (πP (n))2, which we have already
said is small, and in the limit as n → ∞ the volatility tends to a constant. Thus, one of
the main predictions of the additive assumption is that the volatility should be relatively
independent of the state of hidden orders.

Substituting Eq. 21 into Eq.16 we obtain the simple form

E[R|N ] = ηj

[
ν0

N∑
n=1

(1− P(n)) + θ
N∑
n=1

∆(n)

]
. (23)

The first term on the right hand side in Eq.(23)) shows how only the unpredictable compo-
nent of order flow contributes to market impact at any given time along the execution. The
second term allows for inefficiency and for informational effects as the market incorporates
the information that makes order flow predictable. In this paper we will not attempt to
separate out the inefficiency from informational effects; instead we will calculate the theo-
retical impact curve assuming ∆ = 0; in Sec. VI we will review empirical evidence for this
assumption

V. PARTICIPANT MODELS OF ORDER FLOW

The participant model of order flow is needed to understand how its predictability affects
market impact through Eq. (23)). The dependence on the participant model of order flow
is evident through the dependence on P(n), the perceived probability that a hidden order
will continue. In this section we introduce two possible participant order flow models. We
will loosely refer to them as corresponding to two different “information sets” Ω, with the
understanding that they involve both different information and different models based on
this information8. The two models we will consider are:

1. Linear time series model based on order signs. Participants observe the historical
sequence of order flow signs, which are public information, and use standard linear
time series models to predict future signs.

8 As discussed later, the linear time series model does not necessarily make optimal use of the information
on which it is based.
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2. Colored print model of hidden order execution. Participants see “colored prints” as
each hidden order is executed, with unique colors for each active hidden order, telling
them which transactions originate from the same order. They know how many hidden
orders are active and know how much each has executed so far. They do not know the
identities of the hidden orders or their true size, but they do know the unconditional
distribution from which their sizes are drawn.

As discussed in more detail in Section V C, we view these participant models as extremes
that in a certain sense bracket the range of possibilities. We now examine the models in
more detail. In each case the calculation of market impact is reduced to understanding the
behavior of P(n).

A. Linear time series model

Linear time series models are probably the most widely used forecasting tool. Here we
analyze a linear time series model based on the signs of executed transactions, which in most
continuous double auction markets are public information. Under the assumptions of our
model this indirectly reflects the presence and persistence of hidden orders. We will assume
a T th order autoregressive AR model of the form

εt = sign

[
T∑
i=1

aiεt−i + ζt

]
, (24)

as proposed by Lillo and Farmer (2004). ζt is uncorrelated noise, sign(x) = 1 if x > 0 and
sign(x) = −1 if x < 0, and ai are real numbers that can be estimated on historical data
using standard methods. Taking expectations and using Eq. 4, this can be written

ϕ+
t =

1

2

[ ∞∑
k=1

akEt−1[εt−k] + 1

]
. (25)

As discussed in Section VI we assume that the predictability of order flow is entirely due
to the presence of hidden orders. For convenience consider a buy order; the calculation for
a sell order can be done by simply flipping all the signs. Assume hidden order j has been
active for nθ transactions with constant participation rate π. As before, hidden orders are
IID, so that all other hidden orders are equally likely to be buy or sell. The expected sign
Et−1[εt] = 1π+ 0(1−π) = π for k ≤ nθ and Et−1[εt] = 0 for k > nθ. Under the assumption9

that T > nθ, substituting into Eq. 25 and using Eq. 13 gives

ϕ+ =
1

2
(1 + πP) =

1

2

[
nθ∑
k=1

akπ + 1

]
, (26)

which implies

P(n) =
nθ∑
k=1

ak. (27)

9 For the stocks we study here there is a great deal of data, and because the signs are a long-memory process
the coefficients ak can be reasonably accurately estimated up to very large values of T , e.g. T ∼ 500.
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Using Eq. 23 the total impact is

E[R|N ] = ηj

[
ν0

N∑
n=1

(
1−

nθ∑
k=1

ak

)
+ θ

N∑
n=1

∆(n)

]
. (28)

To compute the impact we need to understand the behavior of the autoregressive coefficients
ak. We will distinguish two cases: (1) The best linear time series model is AR(1), as assumed
by Madhavan, Richards and Rooman (1997). (2) The best linear model is a long-memory
FARIMA process. We believe the empirical evidence for case (2) is overwhelming, but we
solve for both of these to illustrate how this assumption effects the answer.

1. AR(1) order flow

As a first case suppose that the order flow is modeled by a zero-mean AR(1) model

εt = ψεt−1 + ζt (29)

where a1 = ψ and ak = 0 for k > 1. Equation 27 gives P(n) = ψ, i.e. the continuation
probability is independent of n. The autocorrelation function of an AR(1) process decays
exponentially, C(τ) ∼ exp[−τ/τc], where the time scale is τc = −1/ lnψ. Note that this
time series model is the one implicitly assumed in the MRR model.

By using Eq.(28) and assuming ∆ = 0, the impact is

E[R|N ] = ηjν0

[
1 +

N−1∑
i=1

(1− ψ)

]
= ηjν0[N(1− ψ) + ψ]. (30)

For large N it is E[R|N ] ∼ N , i.e. the impact is linear. After the completion of the
hidden order the price reverts in one transaction to the permanent impact value which is
ηjν0N(1− ψ).

2. FARIMA order flow

As argued in Section VI there is good evidence that for large times the autocorrelation
C(τ) of order flow asymptotically decays10 as a power law C(τ) ∼ τ−γ for large τ . This
implies the process has long-memory (Beran, 1994). There are several different ways of
generating and forecasting long-memory processes. Here we assume that the participants
observing public information model the time series with a FARIMA process. It is known
(Beran, 1994) that for large k the best linear predictor coefficients of a FARIMA process

10 The notation “∼” means “asymptotically equivalent”, and is widely used in extreme value theory, e.g.
(Embrechts et al., 1997). f(x) ∼ g(x) if

lim
x→∞

f(x)
g(x)

= C, (31)

where C is a constant.
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satisfy ak ≈ φk−φ−1 where φ = (1− γ)/2. For large k we can pass into the continuum limit
and estimate the sum in Eq. 27 by an integral. This gives

P(n) = 1− (nθ)−φ. (32)

Assuming ∆ = 0 and under the symmetric assumption, from Eq. 23 the impact is

E[R|N ] = ηjν0

[
1 +

N−1∑
i=1

(
1−

(
1− (nθ)−φ

))]
. (33)

In order to convert the sum to an integral we use the approximation

N−1∑
n=1

f(n) '
∫ N−1

0
f(x+ 1/2) dx, (34)

which gives

E[R|N ] ≈ ν0

(
1 +

2φ−1θ−φ

1− φ [(2N − 1)1−φ − 1]

)
∼ N1−φ. (35)

Thus the market impact asymptotically increases with the length of the hidden order as
N1−φ. A typical decay exponent for the autocorrelation of order signs is γ ≈ 0.5 [Lillo and
Farmer (2004), Bouchaud et al. (2004)], which means that φ ≈ 0.25. This means that
according to the linear time series model the impact should increase as roughly the 3/4
power of the order size.

An interesting property of this solution is that it depends on the speed of execution. The
size of the impact varies as θ−φ. This means that the slower an order is executed, the less
impact it has, and in the limit as the order is executed infinitely slowly the impact goes to
zero.

Another interesting property of the linear time series model is that the impact is com-
pletely temporary. As was shown by Bouchaud et al. (2004, 2006) it asymptotically decays
to zero as a power law τφ, where φ = (1 − γ)/2. This has to be true in order to preserve
efficiency and compensate for the long-memory persistence of the order flow under the linear
model.

We have derived these results based on the properties of a linear time series model to
predict order flow, as originally suggested by Lillo and Farmer (2004), but it is also possible
to derive the same result based on the hypothesis of a power law decay of purely temporary
impact, as originally suggested by Bouchaud et al. (2004). Either approach gives the same
result.

B. Colored print model of hidden order executions

We now investigate the possibility that market participants have more detailed informa-
tion about hidden orders, including what would normally be considered private information.
We assume that they know:

1. The number of active hidden orders M(t) and the participation rate πj of each order.

2. The correct distribution of hidden orders sizes P (V ), or under our assumpton V = v̄N
this is equivalent to knowing the hidden order lengths P (N).
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3. The number of realized orders nj that have been executed so far11 for each hidden
order j, where 1 ≤ nj ≤ Nj. One can imagine that each active hidden order has its
own unique color, and that participants can see the color of each transaction as it
happens. (This is the origin of the term “colored print”).

4. Once the nth colored print is observed the probability of the hidden order continuing
is updated based on the probability P (N). This update is held until further notice,
i.e. the probability of hidden order continuation, P(n), is maintained until the next
colored print is received regardless of the number of intervening transactions. We will
return to relax this assumption and take into account the uncertainty of detecting the
end of a hidden order in Section V B 3.

Participants do not know the true size of any particular hidden order j, and thus they
do not know when the execution of order j will end. They also do not know who originates
each order, so there is no distinction between informed and uninformed trades.

1. Stretched exponential distribution of hidden order sizes

To illustrate how the distribution of hidden order sizes determines the shape of the impact
function we first consider a stretched exponential distribution, of the form

P (V ) =
β

Γ(1/β, 1)
e−V

β

, (36)

where the normalization factor Γ(a, z) is the incomplete Gamma function and β > 0 is a
parameter specifying whether the distribution decays for large V faster (β > 1) or slower
(β < 1) than an exponential. For convenience we have chosen units so that v̄ = 1, so that
V ≥ 1. As already emphasized, we do not believe this is the correct functional form, as
this distribution leads to an autocorrelation function for realized order signs that decays

as C(τ) ∼ exp(−τβ)τ
2
β
−1. The dominant term is exponential, which decays too fast to

be compatible with the observed long-memory of order flow. Nonetheless, analysis of the
stretched exponential is useful because it gives insight into how the tail behavior of the
hidden order distribution causes the concavity of the market impact function and provides
a useful null hypothesis.

Under our assumption V = v̄N we can equally well use N . The cumulative distribution
is

P (Nj > N) =
∫ ∞
N

P (N) dN =
Γ
(

1
β
, Nβ

)
Γ
(

1
β
, 1
) . (37)

Once an order has already had n executions, the probability that it will continue is

P(n) =
P (N > n+ 1)

P (Nj > n)
=

Γ
(

1
β
, (n+ 1)β

)
Γ
(

1
β
, nβ

) . (38)

11 Under our convention about measuring returns from just before one transaction until just before the next
information about hidden order arrival is necessarily split across returns. I.e. when the nth hidden order
transaction is made the immediate price change is based on liquidity as set by providers based on the
(n− 1)th hidden order arrival, but subsequent quote-driven transactions are potentially aware of the nth

arrival. This is obviously a small effect.
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By using the asymptotic expansion of the Gamma function we get

P(n) ∼ exp
[
−(n+ 1)β + nβ

] (
1 +

1

n

)1−β
. (39)

The function P(n) is increasing and converging to 1 for β < 1, decreasing and converging to
0 for β > 1, and constant with the value e−1 for β = 1. This shows how the predictability
of order flow depends on the distribution P (V ) of hidden order sizes: If P (V ) has tails that
are heavier than those of an exponential, then the longer a hidden order goes on, the more
likely it is to continue. If its tails are thinner than those of an exponential, the longer it
goes on, the less likely it is to continue. The boundary case is when P (V ) is exponential, in
which case the likelihood for a hidden order to continue is independent of its size.

The impact can be written

E[R|N ] = ηjν0

(
1 +

N−1∑
n=1

(1− P(n))

)
= ηjν0

(
1 +

N−1∑
n=1

P (n)

P (x > n)

)
. (40)

By using the above expressions

E[R|N ] = ηjν0

(
1 + β

N−1∑
n=1

e−n
β

Γ(1/β, nβ)

)
' ηjν0

(
1 + β

∫ N−1

0

e−(n+1/2)β

Γ(1/β, (n+ 1/2)β)
dn

)

= ηjν0

(
1 + log[Γ(1/β,

1

2β
)]− log[Γ(1/β,

(
N − 1

2

)β
)]

)
∼ Nβ. (41)

The impact is concave for β < 1, convex for β > 1, and linear for β = 1. Thus we see
that once again the exponential distribution is the boundary case: If the distribution of
hidden order sizes is exponential the impact is linear. If the tails are thinner than those of
an exponential the impact is convex, and if the tails are fatter than those of an exponential,
the impact is concave.

2. Power law distribution of hidden order sizes

A more realistic assumption is that hidden order sizes are drawn from a distribution that
is asymptotically a power law for large V , of the form P (Vj > V ) ∼ V −α. As discussed
in Section VI we believe there is good empirical evidence supporting this for several stock
markets.

We now compute the impact. For convenience we assume a “pure” power law with tail
exponent α, i.e. one with probability density function P (N) = KN−(1+α). Given that
a hidden order has already had n realized transactions, the probability P(n) that it will
continue is

P(n) =

∑∞
t=n+1Kt

−(1+α)∑∞
t=nKt

−(1+α)
=
ζ(1 + α, n+ 1)

ζ(1 + α, n)
(42)

where ζ is the Riemann Zeta function. Using Eq. 23 (the symmetry assumption) we obtain

E[R|N ] = ηj

(
ν0

N∑
n=1

(1− ζ(1 + α, n+ 1)

ζ(1 + α, n)
) + θ

N∑
n=1

∆(n)

)
. (43)
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In the large N limit this can be written much more simply. For large n we can approximate
P(n) as

P(n) =
ζ(1 + α, n+ 1)

ζ(1 + α, n)
≈
(

n

n+ 1

)α
. (44)

Assuming ∆ = 0 and neglecting small terms, from Eq. 23 the impact in the large N limit is

E[R|N ] = ηjν0

(
1 +

N∑
n=1

(
1−

(
n

n+ 1

)α))
≈ ηjν0

(
1 + α

N∑
n=1

1

n

)
. (45)

By replacing the sum with an integral according to Eq. 34 we have

E[R|N ] = ηjν0(1 + α log(2N − 1)) ∼ logN. (46)

The predicted impact thus asymptotically grows as a logarithm, i.e. it grows much slower
than under the linear time series model. This solution also has the interesting property that
the impact is independent of the participation rate, i.e. it is the same no matter how quickly
the trade is executed. We will see that once we take the need for detecting the end of the
order into account this changes, as does the functional form of the impact.

3. Detecting the end of hidden orders

So far we have left unspecified how participants detect the end of hidden orders. As a
result we have so far been unable to compute the behavior of the impact once the order ends.
To do this we need to model how P , the continuation probability, is changed both before
and after the order ends. As we will now show, the change is large enough to significantly
modify the functional form of the impact while the order is still active. Unlike the linear
time series model, we find a permanent component of the impact.

In assumption (4) of the colored print model at the beginning of this section we assumed
that P(n) is held constant between colored prints. Ultimately this assumption must be
violated when participants discover the hidden order is over. The time it takes to discover
the end of the hidden order will determine how persistent the impact is. For example,
consider a buy hidden order that persists for N transactions. After the N th transaction the
asymmetric price response is r+(N)/r−(N) < 1. If participants do not immediately discover
that the hidden order has ended, then there will be a temporary period of inefficiency during
which the asymmetric price response persists even though there is no imbalance in order
flow. During this period, since ϕ+ = ϕ− = 1/2, according to Eq. 14 the expected market
impact will revert at a rate Et[rt] = εj(r

+ − r−)/2 per transaction. When the participants
finally discover the hidden order is over the asymmetric price response will disappear so
that r+ = r−, and any remaining impact will be persistent. The problem with this line of
reasoning is that we assume that participants are confident the order is present as long as it
is still present, and that after it ceases to be present for a period of unspecified length they
do not discover it is over, during an arbitrary period of inefficiency.

Instead we now make a self-consistent model in which the liquidity providers use Bayesian
reasoning to detect the end of hidden orders. As before we assume that liquidity takers
execute their hidden orders with market orders according to a Poisson process. Assume the
liquidity providers know the participation rate π, which is the rate of the Poisson process.
Let m be the number of transactions since the last colored print at step n and let S indicate
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that the hidden order is still active, and S̄ indicate that it is inactive. The probability that
the order is alive is

Q = P (S|m) =
P (m|S)P (S)

P (m)
(47)

The terms on the right are easily computed as follows:

P (m|S) = (1− π)m

P (S) = P(n)

P (m) = P (m|S)P (S) + P (m|S̄)P (S̄)

= (1− π)mP(n) + 1(1− P(n)) = 1− P(n) [1− (1− π)m] .

Solving for Q gives

Q(n,m) =
(1− π)mP(n)

1− P(n) [1− (1− π)m]
. (48)

Note that for m = 0 this reduces to Q(n, 0) = P(n), reflecting the fact that it is known with
certainty that the order is still active.

The market impact can be computed by substituting Q for P in Eq.(14) and setting ∆ =
0. Because of the increased uncertainty about the continuation of the order,Q(n,m) ≤ P(n),
which increases the impact. This is illustrated in Figure 2. We have run 5× 105 simulations
simulations of the hidden orders of different length and we have averaged the price profiles
over the simulations. During the hidden order we have sampled the price any time a colored
print is submitted whereas in the reversion part we have sampled the price every (uncolored)
transaction. In order to make the time scales comparable we have rescaled the time during
the reversion part by multiplying the time by π. The resulting average market impact
function grows (probably) faster than a logarithm, thus illustrating how uncertainty about
the end of the hidden order can alter the asymptotic scaling. The reason for this is evident in
the inset, where we have plotted ϕ+

t . When the fluctuations of the Poisson order placement
process cause long intervals between colored prints the Bayesian liquidity provider starts to
infer that the order has ended, decreasing Q and making the liquidity less asymmetric. This
increases the expected impact.

It is possible to find an analytical solution of this model. We assume the additive as-
sumption, which in this case becomes

r+ = 2(1− p+) = 1− πQ (49)

r− = 2p+ = 1 + πQ. (50)

For convenience we have set ν0 = 1.
Between the n-th and the n+ 1-th colored print and after having observed m uncolored

prints, the ex-post expected return of an uncolored transaction is

E[r] =
r+ − r−

2
= 1− 2p+ = −πQ(n,m) (51)

After M uncolored prints the n + 1-th colored print is placed and its ex post return is
r+ = 1− πQ(n,M). The probability that between the n-th and the n+ 1-th colored prints
there are M uncolored prints is

qM = (1− π)Mπ (52)
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FIG. 2: Expected impact under the Poisson approximation under uncertainty about termination of
the hidden order. The plot is in log-linear scale. The red line describes the simulations of the model
with no updating of the continuation probability P between the n and the n+ 1 execution of the
hidden order, whereas the blue line describes the continuous updating process Q with uncertainty
about where the order stops. The black line is the exact result obtained from our theory (Eq. 45).
The parameters are π = 0.1 and α = 1.5. The simulated data are averaged over 5×105 simulations.
The inset shows ϕ+

t for one specific realization. The red line refers to the model without updating
and the black line refers to the model with continuous updating.

Therefore the ex post price impact between the n-th and the n + 1-th colored print is on
average

ρn = pn+1 − pn =
∞∑

M=0

qM

{
−π

M−1∑
m=0

Q(n,m) + 1− πQ(n,M)

}
= (53)

= 1− π2
∞∑

M=0

(1− π)M
M∑
m=0

(1− π)mP(n)

1− P(n)[1− (1− π)m]
(54)

Setting a = 1− P(n) we get

ρn = aπ2
∞∑

M=0

(1− π)M
M∑
m=0

1

a+ (1− a)(1− π)m
(55)

Unfortunately the sum cannot be performed analytically but only numerically. However
we can get an approximate expression by converting the sums in integrals. We use the
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approximation that
N∑
n=0

f(n) '
∫ N+1

0
f(x− 1/2)dx (56)

and, after some calculations, we obtain

ρn ' −π2a ln a+ (1− a) ln(1− a+ a
√

1− π)

(1− a)
√

1− π(ln(1− π))2
(57)

We are interested in the behavior for small a, i.e. values of P(n) close to 1. By expanding
the above expression the leading term is

ρn ∼ −π2 a ln a√
1− π(ln(1− π))2

=
π2α√

1− π(ln(1− π))2

1

n
ln
n

α
∼ π2α√

1− π(ln(1− π))2

lnn

n
(58)

where we have set a = α/n. By integrating the leading term between 1 and N we get an
approximated expression for the impact

E[R|N ] ∼ απ2

2
√

1− π(ln(1− π))2
(lnN)2 (59)

This shows that (i) the impact grows as the square of the logarithm of the hidden order size
N and (ii) the impact is a decreasing function of the aggressiveness parameter π.

This example illustrates that in order to capture the true information set of market
participants in the colored print model we need to take the detection of the end of a hidden
order into account. This answer we have computed here depends on the Poisson process
for realized order placement. It also requires taking the colored print model literally and
assuming ∆ = 0, which we do not think are realistic assumptions Nonetheless, it illustrates
how this aspect of the problem influences the size of the impact, and most importantly, how
it affects the permanence of the impact.

C. Discussion of order flow models

The linear time series model and the colored print model represent computable extremes
that in some sense bracket the level of information likely to be available in order flow models.
Information about order flow varies from market to market12, but in most modern financial
markets signed order flow is public information. This is not, however, the only information
available, and even if it is, linear time series models are not an optimal choice. In this section
we review some of the possibilities and discuss their implications for order flow prediction.

Linear time series models serve as a lower bound for the predictability of order flow.
Such models are easily to implement, even in real time, and one can expect that if there
is anything to be gained from their use, they will be used. However, for order flow that

12 In London, Paris, Spain, and many other electronic stock markets it is possible to observe order flow
directly in real time. For the NYSE or NASDAQ one is only able to observe transactions and best quote
changes in real time, but signed order flow can be inferred (with some mistakes) using the Lee and Ready
algorithm (1991).
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follows the model of Lillo, Mike, and Farmer (LMF, 2005), which forms the basis of our
theory, linear time series models are not an optimal method of prediction. This is true even
if the only information available is a time series of order flow signs. The reason for this
is because linear time series models for long-memory processes average over a long window
into the past, whereas the LMF model is strongly state dependent: After a hidden order
stops the past behavior of that order ceases to have any predictive value. This is most
apparent if there is only one hidden order active at a time, in which case it is often obvious
when one hidden order stops and another starts. As a result the best model is not a linear
time series model, but rather a regime switching or structural break model. This is similar
to the situation for modeling long-memory for volatiity13. Preliminary results suggest that
prediction methods that incorporate state dependence, such as hidden Markov models, can
be more effective. We are currently investigating such models and hope to present some
comparisons in the future.

In some cases participants can make use of information other than the time series of order
flow signs. There are often indirect clues about the identity of orders such as the consistent
use of particular round lots for orders that arrive at regular intervals. Activity in block
markets can also provide clues about the activity of large orders. Such possibilities make it
difficult to know the predictability of order flow a priori. When all such effects are taken
into account, what information do participants actually have?

While it is implausible that the colored print model is strictly correct, we believe that an
approximation of it may be plausible. This might involve a superior algorithm for exploiting
publicly available order flow as well as the usage of other clues about order flow identity.
Such an order flow would not be capable of discovering the initiation of hidden orders
immediately, but it still might be effective enough for sufficiently long hidden orders to
validate the asymptotic predictions of the colored print model.

D. Information revelation

Perhaps the most surprising aspect of these results concerns information revelation. The
colored print model has more information revelation than the linear time series model yet
asymptotically it has lower impact, since asymptotically a power law will always overtake a
logarithm. This remains true even in the more accurate case where we require participants
to detect the end of hidden orders.

This suggests that there are situations when it is to a liquidity taker’s advantage to reveal
information. If true this would be very surprising. It goes against the prevailing wisdom of
market participants, who work hard to keep their intentions as secret as possible. What is
not quite as clear is whether this is reasonable from a game-theoretic point of view: Under
what situations might it be advantageous to provide opponents with information? In a
two-play competitive zero-sum game, providing an opponent with additional information
cannot hurt their performance, and can only improve it. The situation is not as clear in
more general games.

13 For example see the discussion in Poon and Granger (2003).



26

VI. EMPIRICAL RESULTS

In this section we present empirical results to test the theory that we have developed.
These results are reported for 6 stocks. As we will show, assuming there is indeed a consistent
functional form for market impact, this quantity of data we study here is not sufficient to
determine it. Nonetheless, the data are sufficient to demonstrate that several aspects of our
theory are correct, while calling some of the assumptions into question. The approach we
present here provides a blue print for future studies with larger data sets.

A. Our data

We study six stocks traded on the London Stock Exchange AZN (AstraZeneca), BSY
(British Sky Broadcasting Group), LLOY (Lloyds TSB Group), PRU (Prudential Plc), RTO
(Rentokil Initial), and VOD (Vodafone Group). The choice of these six stocks is somewhat
arbitrary, and is largely determined by the fact that we have carefully cleaned these data
and believe that we have a reliable record of almost every order placement (see discussion
below). AZN, LLOY, and VOD are among the most heavily traded names; see Table I for
the trading volume for each stock. The data is from the on-book exchange (SETS) only,
and is for the period from May 2, 2000 to December 31, 2002. There are time-stamp issues
with orders traded off-book, and therefore it is difficult to determine the impact of these
orders. Also, many off-book trades are eventually offloaded in the on-book exchange – if we
included off-book data, many trades would be analyzed in duplicate. For these reasons, we
have chosen to use only on-book data. The dataset contains a complete record of all order
placements, so we are able to determine the signs of orders unambiguously. In the figures
we consistently use AZN to illustrate our results, and present results from other stocks or
make comments in the text in the few cases that the results are significantly different from
those obtained with AZN.

These data have anonymized codes attached to each trading order indicating the LSE
member firm through which it was submitted14. The number of member firms of the LSE
is of order 100, but they vary in terms of total activity; a substantial portion of the trading
volume for a stock can be focused within only a fraction of the firms. Membership in the
exchange does not identify the individual trading accounts, and in most cases members are
acting as brokerages, handling the trades for an unknown number of clients. Since we do
not know who these are we will refer to such clients as “agents”.

While the data are generally quite reliable, the time stamps associated with orders are
only accurate to the second, and the correct sequencing of orders posted in the same second
is not guaranteed. This sometimes leads to inconsistencies such as execution against orders
that do not yet exist when reconstructing the order book. Within any second intervals that
create problems we have resequenced the data to avoid such inconsistencies. While this rese-
quencing is not always unique, it is at least plausible. The consequent time rearrangements
are small and we do not think this affects the results presented here.

14 In the original data set these codes were randomly shuffled every month, but Tom O’Brien of the LSE
has graciously provided us with a key that allowed us to unscramble the codes.



27

B. What causes the persistence of order flow?

One of the assumptions we have made throughout the development of our theory is that
the persistence of order flow is caused by the incremental execution of hidden orders. In this
section we review the empirical evidence that supports this hypothesis and present some
new evidence. We also argue that in the markets where this has been studied the evidence
indicates that the distribution of large orders is a power law and the resulting order flow
has long-memory.

The evidence can be briefly summarized as follows:

1. The distribution of large orders in block markets is distributed as a power law P (V >
x) ∼ x−α, with α ≈ 1.5.

2. Order flow in order book markets shows long memory, with a decaying autocorrelation
C(τ) ∼ τ−γ, with γ ≈ 0.5.

3. A theory based on (1) and the incremental time and size-independent execution of
hidden orders predicts α = 1 + γ.

4. New evidence that we present here shows that transactions made under the same mem-
bership code show autocorrelations consistent with long-memroy, whereas transactions
made under different order codes do not.

We now discuss this evidence in more detail.
A power law tail with tail exponent α ≈ 1.5 for the hidden order size distribution was

originally observed for the NYSE by Gopikrishnan et al. (2000). Similar behavior was
observed for the Paris and London stockmarkets by Gabaix et al. (2006), and under ag-
gregation across many stocks the power law behavior becomes quite crisp, i.e. for large
volumes the data fit a power law closely over several orders of magnitude. With these data,
however, it is impossible to distinguish block trades and order book trades. Lillo, Mike and
Farmer (2005) used data from the LSE in which it is possible to separate block trades from
order book trades and study their distributions separately. An example is given in Figure 3.
Using a Hill estimator on the largest one percent of the block trades gives a tail exponent
α ≈ 1.59. In contrast, for the order book trades the tail exponent is α ≈ 2.9, showing that
the order book trades have a much thinner tail. Since it is well known that incremental
execution is widespread in order book markets while it is discouraged in block markets, the
block market is assumed to be a better proxy for the distribution of intended trade sizes.
When the data sets are mixed together, as they were in the studies of Gabaix et al., the
much heavier tail of the block trades will dominate the tail of the aggregate distribution,
justifying the assumption that the tail represents block trades. These estimates are fairly
consistent from stock to stock.

It has been seen in several different studies that the first autocorrelation of order flow
is positive15. Bouchaud et al. (2004) and Lillo and Farmer (2004) studied the tails of the
autocorrelation function at large lags and observed long-memory for order flow in the Paris,
London and NYSE stock exchanges. This means that the autocorrelation function C(τ) of
the signs εt of transactions decays in time as C(τ) ∼ τ−γ, where 0 < γ < 1. The autocor-
relation function of a long-memory process is not integrable in the limit τ → ∞, and such

15 See for example Biais (1995), Danielsson (2001), Ellul et al. (2005).
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FIG. 3: Volume distributions of block trades (circles), order book trades (diamonds) and the
aggregate of both (squares), from Lillo, Mike and Farmer (2005). This is for a collection of 20
different stocks, normalizing the volume of each by the mean volume before aggregating the data.
The dashed black lines have the slope found by the Hill estimator (and are shown for the largest
one percent of the data).

processes do not have a characteristic time scale, i.e. the integral of the autocorrelation
function,

∫
C(τ)dτ , does not exist. Long-memory processes can be characterized by the

exponent γ of the autocorrelation function or equivalently in terms of the Hurst exponent
H = 1−γ/2. The observation of long-memory in stock markets is very robust; in London, for
example, all of the twenty stocks examined showed long-memory at highly statistically sig-
nificant levels under strict statistical tests (Lillo and Farmer, 2004). Whether long-memory
also exists in other types of markets (FX, interest rates, commodities, etc.) is not known.

Under the assumptions of a power law distribution of hidden orders and that all active
hidden orders are executed at the same rate, independent of their size or the number of
previous executions, Lillo Mike and Farmer showed that in the limit τ → ∞ this leads
to an autocorrelation function for order flow that decays as a power law C(τ) ∼ τ−γ.
This prediction is testable by comparing the distribution of trade sizes in block markets
to the autocorrelation function of order signs in order book markets. In block markets
trades are made bilaterally and the identity of counterparties is known. Brokers do not like
order splitting and strongly discourage it. Thus block markets can be considered a crude
proxy for observing the distributional properties of hidden orders16. For comparison17 the

16 The exception is that it is possible to split an order and trade with multiple brokers.
17 The error bars in computing both γ and α are substantial, as can be seen by computing them for sub-

samples of the data, and the close agreement between γ and α − 1 is probably fortuitious. The error
analysis in the presence of long-memory is not trivial and we intend to refine it in the future.
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average measured values of γ for these stocks was γ = 0.57, close to the predicted value
γ̂ = α− 1 = 0.59.

Further supporting evidence comes from a study of the Spanish stock exchange by Vaglica
et al. (2007) who have reconstructed hidden orders using data with brokerage codes. They
confirm directly that V ∼ N , i.e. that uniform execution rate is a good assumption. Simi-
larly, they find that N is distributed as a power law for large N with α ≈ 1.5. Using their
methods, in an as yet unpublished study, this has been confirmed as well for the LSE.

We present additional direct evidence here for the hypothesis that the dominant cause
of long-memory in revealed order flow is order splitting. This analysis takes advantage of
the fact that we have the exchange membership code associated with each order book trade
(see the discussion of the data in Section VI A). In Figure 4 we compare the autocorrelation
function for trades with the same membership code to those with different membership
codes for the stock AZN; the results for other stocks in our data set are essentially the same.
The autocorrelation functions of the signs of trading orders from the same membership
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FIG. 4: Autocorrelation of trade signs as a function of transaction sequence for transactions with
same brokerage code (green triangles), different brokerage code (red x), and all transactions irre-
spective of brokerage code (blue circles), plotted on double logarithmic scale. To suppress statistical
fluctuations autocorrelation coefficients with nearby lags are averaged.

code and all membership codes both decay roughly as a power law, as indicated by their
approximation to a straight line on log-log scale. More rigorous statistical tests based on
the methods used in Lillo and Farmer (2004) confirm this. In contrast, the autocorrelation
function for realized order signs from different brokerages decays rapidly, and is clearly not
a power law. By lag 10 there are already negative values; because we are using a logarithmic
scale we cannot even plot them. In contrast, for the data based on the same brokerage
codes, all autocorrelations are positive out to lags of 1000.

To summarize, there are three empirical results supporting the hypothesis that order
splitting is the primary cause of long-memory in trading signs. These are (1) observations of
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trading volume distributions consistent with power laws in block markets with exponent α ≈
1.5; (2) agreement of observed long-memory of order-book transactions with the predicted
relation α = γ+1; and (3) disappearance of long-memory for orders with different brokerage
codes. While there are likely to be other factors that contribute to the predictability of
order flow, the dominant cause appears to be order splitting of hidden orders whose volume
is drawn from a distribution that in the limit V →∞ is a power law tail.

C. Detection of hidden orders

To test our theoretical predictions about market impact we need to identify individual
hidden orders. Doing this accurately requires information about trading accounts. We do not
have such information, but we do have anonymized membership codes making it possible to
identify which orders are made by the same member of the exchange. This provides enough
information to separate most hidden orders, particularly large ones. Although our method
of doing this is deficient in several respects it is good enough to be very useful. An algorithm
for identifying hidden orders with some advantages over ours was introduced by Vaglica et
al. (2007); we will comment later on the pros and cons of the two approaches.

Our algorithm is very simple. We assume that all the transactions of a given hidden order
are made by the same member of the exchange, that they are of the same sign, and that they
are within θmax = 100 transactions of each other18. The algorithm proceeds by applying
the criteria to the first 100 orders, labeling all orders with no matches as hidden orders of
length one, and lumping together other transactions as being part of the same hidden order
according to the criteria above. We then examine each new transaction successively, either
adding it to any pre-existing hidden order (including those of length one) if it satisfies the
criteria above or designating it as a new hidden order of length one. Under this procedure
it is possible to have multiple hidden orders active at the same time. It is also possible that
for the same membership code two hidden orders of opposite signs can be active at the same
time.

We need to make several caveats, some of which are serious: (1) Our algorithm assumes
that all agents submit their orders through a single member of the exchange. This is cer-
tainly not strictly true – agents are known to split their orders across several brokerages.
Nonetheless, the fact that orders submitted through different brokerages do not have long-
memory, as shown in Figure 4, indicates that agents submit most of their orders through the
same member of the exchange. (2) Many different agents trade through the same member
of the exchange, and more than one of them may be actively trading with that member at
the same time. Thus the algorithm is in some cases lumping together two or more hidden
orders. See our analysis below, which provides estimates of the error rate. (3) It is common
to use a mixture of market and limit orders to execute a hidden order, but we are studying
only hidden orders made up purely of market orders. This sometimes results in erroneous
splitting of larger hidden orders. (4) The algorithm imposes an upper bound θmax which
will artificially split hidden orders if any two executions are separated by more than θmax
transactions. We analyze this effect quantitatively in the next section and argue that it
works well for intermediate size hidden orders but splits large orders much too often. (5)

18 The value θmax = 100 was chosen by varying θmax and choosing the value that minimized the autocorre-
lation of the hidden order sequence, as described in Section VI E.
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We are only considering the on-book market; the same agent may also trade in the off-book
market. During this period roughly fifty percent of order volume is executed in the off-book
market. The off-book market is not anonymous, and brokers strongly discourage order split-
ting, which suggests that off-book market trades are less relevant than on-book trades for
understanding the behavior of hidden orders.

All of these effects introduce problems into our analysis that the reader should bear in
mind. Problem (4) is particularly serious, and introduces problems that we will comment
on later. In a future study we intend to do a careful comparison of several different methods
for hidden order classification, including the method of Vaglica et al. (2007) and a method
based on hidden Markov models.

D. Estimate of the error rate of the algorithm

As discussed above our reconstruction makes errors both in falsely merging hidden orders
from different agents using the same member of the exchange to execute their order, and
in falsely splitting large hidden orders. In this section we make estimates of both of these
effects.

To get an estimate of false merging we compute the fraction of the time that each member
has at least one active hidden order. For example, according to the results of our algorithm,
for AZN the two most active members have active hidden orders in process about 20% of the
time. Thus, under the hypothesis that each individual hidden order is executed according to
a Poisson process, there is a 4% chance that two orders executed by one of these members
will overlap. Relaxing the Poisson process assumption will lead to higher overlap rates, so
this estimate is optimistic, but it suggests that the order of magnitude of the overlap effect
is not prohibitively large.

Similarly, under the Poisson process assumption, since (1 − π) is the probability that a
hidden order with participation rate π does not have an execution on any given transaction,
the probability that a very long hidden order will go for θmax transactions without being
falsely split by our algorithm is ps = (1 − π)θmax . The typical length at which splitting
becomes likely is therefore Lmax = 1/ps = 1/(1 − π)θmax . For AZN, for example, π ≈ 0.05
implies that with θmax = 100, Lmax ≈ 170. We thus expect the tail of the distribution of
hidden orders to be artificially truncated by our reconstruction algorithm at roughly this
length.

E. Consistency checks

Several consistency checks give insight into the performance of our algorithm. One is the
autocorrelation function of the signs of hidden orders. If the assumption that the signs of
hidden orders are IID is correct and our reconstruction method is sufficiently accurate, then
we should recover uncorrelated hidden order signs. We compute the autocorrelation function
of reconstructed hidden order signs, putting them in sequence based on the time when each
hidden order begins. For τ > 0 the coefficients of the autocorrelation function are all close to
zero, but with a slight negative bias. This can be seen for the stock AZN in Figure 5(a). The
cumulative of the autocorrelation function is also plotted and appears to level out at around
a lag of 400 transactions. We report the average of the first 100 autocorrelation coefficients
for each stock in Table I. As seen in the table, the coefficients are negative but very close
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to zero. This should be compared with the strong positive autocorrelations observed for
realized orders in Figure 4. This indicates that the assumption of IID hidden order signs
is reasonable and that our algorithm is not making large systematic errors in signing and
sequencing hidden orders.

AZN BSY LLOY PRU RTO VOD
Transactions ×105 5.7 3.6 6.0 3.9 2.1 10
Avg Autocorr ×10−3 -2.0 -1.6 -.92 -2.1 -1.5 -.98
α 1.7 1.9 1.9 1.8 2.0 1.7
γ .6 .6 .6 .6 .5 .7
Avg M 14 14 15 14 12 17
Avg θ 25 24 27 24 22 30
r+ Slope Linear -.7 -.62 -.96 -.42 -1.1 -1.1
r− Slope Linear 1.3 1.3 .96 1.4 .61 .80
r+ Slope Colored Print -.4 -.05 -.37 -.44 -.54 -.64
r− Slope Colored Print .9 .67 .43 .42 1.3 .02

TABLE I: Summary Statistics. Rows from top to bottom, (1) number of transactions in the sample,
(2) average autocorrelation for first 100 lags of hidden order size εN , (3) tail exponent, α, of the
hidden order size distribution as measured using the Hill estimator, (4) power law exponent, γ, of
the autocorrelation function for signed transactions, (5) average number of hidden orders active at
one time, M , (6) average number of transactions between pieces of a hidden order θ, (7) slope of
r+/ν0 when measured as a function of the linear model sign predictor ε̂(ts)(τ = 10), (8) slope of
r−/ν0 when measured as a function of the linear model sign predictor ε̂(ts)(τ = 10), (9) slope of
r+/ν0 when measured as a function of the colored print model sign predictor ε̂(cp)(τ = 10), (10)
slope of r−/ν0 when measured as a function of the colored print model sign predictor ε̂(cp)(τ = 10)

Even if the true sequence of hidden order signs is indeed IID, the problems of falsely merg-
ing or splitting hidden orders will affect the autocorrelation of hidden order signs observed
in the reconstruction. Falsely merging orders induces a negative autocorrelation. Assuming
an IID sequence, this is because nearby orders of the same sign are compressed into a single
order, thus causing a tendency for the sequence of signs to alternate. Similarly, splitting
orders induces a positive autocorrelation, due to the fact that a single order is replicated
to become two or more nearby orders of the same sign. The net autocorrelation of the
reconstructed hidden order sequence is thus a combination of these two effects, added to
whatever autocorrelation might exist in the true sequence of hidden orders. The observed
negative autocorrelation suggests that either the assumption of IID hidden order signs is
slightly wrong or that there is a net tendency to falsely merge orders, or some combination
of both. Nonetheless, the fact that the observed autocorrelation of order signs is not large
indicates that overall these problems are not large.

Our primary goal here is to measure market impact, and the possibility that our algorithm
artificially splits or merges orders potentially distorts the impact. Since the impact is a
concave function of order size, artificially splitting a large order will tend to assign improperly
small impacts to large orders and similarly merging orders tends to assign improperly large
impacts to large orders. The above diagnostic suggests that this would not be a problem if
this were size independent. However, as we will demonstrate later, large orders are much
more likely to be split than small orders, which creates problems in measuring impact.
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FIG. 5: Four diagnostics for our hidden order reconstruction algorithm applied to the stock AZN.
(a) The autocorrelation function of signed hidden order size (εN) (blue up-triangles) and its cu-
mulative (red down triangles). (b) P (N > x), the probability that the length of a reconstructed
hidden order is greater than a given value x, plotted on double logarithmic scale. For comparison
a line of slope 1.7 is shown, corresponding to the asymptotic power law predicted from the relation
α = γ + 1 based on measurements of H from the realized order flow. (c) is a histogram of the
number M(t) of hidden orders that are active at the same time, compared to a normal distribu-
tion. (d) is the cumulative probability distribution P (τ > x) for the interval τ between successive
executions of hidden orders, plotted on semi-logarithmic scale and compared to an exponential
distribution.

We have shown that the distribution of hidden order volumes is an important determinant
of the asymptotic market impact, and argued that the cumulative distribution of hidden
order lengths is asymptotically a power law for large N with exponent α = γ + 1. We can
check whether our reconstruction is consistent with this hypothesis based on the empirical
histogram of hidden order lengths, as shown in Figure 5(b). This figure is plotted in double
logarithmic scale so that a power law appears as a straight line. The tail exponent α of
the distribution is calculated using a Hill estimator19, and the resulting estimate, α = 1.7,
is drawn as a straight line in the plot. In Table I we present the estimated values of α

19 The Hill estimator is calculated as χ̂ = 1 +n/
∑n

i=1 log(xi/xmin), where xi represents empirical data and
n is the number of observations xi ≥ xmin. n is set such that only the largest 1% of the data is included
in the estimate.
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for each stock and we show values of γ measured by computing the Hurst exponent of
signs for the realized order flow20. As seen in the table, the agreement with the relation
α = γ + 1 is variable, but this relation is never wildly wrong. The estimates for α based
on the reconstruction tend to be higher than γ + 1. In performing this reconstruction
we have the problem that because this is an asymptotic relationship, for small values of
N there is no reason to expect a power law, and for N > 170 we have predicted that
the algorithm will truncate the distribution. This leaves very little dynamic range to test
our original assumption. Thus it is impossible to strongly confirm this relation using the
methods illustrated Figure 5(b), but in view of the problems mentioned above they are
also not inconsistent with it. Note that the longest hidden orders in the reconstruction
have lengths as long as N = 2000, corresponding to a timescale of roughly Nθ = 40, 000
transactions, or roughly 40 trading days. The algorithm of Vaglica et al. (2007), in contrast,
shows results consistent with a power law even for large sizes, recovers more long hidden
orders, and for the Spanish stock market produces more consistent results.

Figure 5(c) is a normalized histogram of M(t), the number of hidden orders that are
active at a time. This is very well fit by a normal distribution with mean E[M ] = 14.3 and
standard deviation 2.7. Thus on average there are about 14 active hidden orders for AZN
(the average number of orders for the other stocks is reported in Table I). For comparison,
Lillo, Mike and Farmer estimated this by comparing the empirical autocorrelation function
of realized orders to that predicted by their model, giving an estimate E[M ] ≈ 21. The
reconstructed distribution and the mean value estimated from Figure 5(c) is sensitive to
θmax, but it is reassuring that these estimates are of the same order of magnitude.

Finally, Figure 5(d) shows the cumulative probability distribution P (τ > x) for the inter-
val τ between successive executions of hidden orders for AZN, plotted on semi-logarithmic
scale and compared to an exponential distribution. As expected the distribution is trun-
cated for values of τ close to θmax = 100, but from roughly τ = 10 to τ = 80 there is
reasonable agreement with an exponential. This is consistent with the Poisson hypothesis,
and suggests that the probability of artificially splitting an order is about 1%, consistent
with our previous estimates. The mean value of θ for each stock is reported in Table I.

F. Inefficiency and informational effects

In this section we present empirical tests of the assumption that ∆ = 0 under the order
flow models of Section V. Recall that from Eq. 7 the observational inefficiency includes both
real inefficiencies of the model (which might allow arbitrage) as well as the result of the
direct informational effects χt (which will not allow arbitrage if all players have the same
access to χ), so this is really a test of both inefficiencies and direct information. We look
at how well the linear time series and colored print models predict order flow and explicitly
demonstrate asymmetric price response.

To implement the linear time series model we use an autoregressive predictor of the form

ε̂
(ts)
t =

K∑
i=1

aiεt−i, (60)

20 The exact relation is γ = 2(1−H). This procedure is more accurate than estimating the exponent directly
from the autocorrelation function (see Lillo and Farmer, 2004).



35

and we set ai = φi−φ−1 (as it would be for a FARIMA process). This relationship agrees
well with fitting an autoregressive model to the order flow series with least squares. We use
K = 10, 000 in the results that follow.

For comparison we also predict order flow based on the colored print model. We first
classify all the hidden orders using the algorithm described in Section VI C. A prediction
algorithm for the probability of the next sign is then constructed by using Eqs. 4, 13 and
44 and averaging over all hidden orders that are active at time t. Let Atj = 1 if order j is
active at time t and Ajt = 0 otherwise, and let njt be the number of previous incremental

transactions order j has experienced at time t. The expected sign imbalance ε̂
(cp)
t is

ε̂
(cp)
t =

∑
j

AtjηjπjP(njt) ≈
∑
j

Atjηjπj

(
njt

njt + 1

)α
. (61)

Both ε̂
(ts)
t and ε̂

(cp)
t can be used to predict the signs at the next time, and they can also

be used to predict at any future time t + τ , where τ is any positive integer. A natural
performance measure for the quality of the predictions is the fraction of times the future
sign matches the predicted sign at time t+ τ , i.e.

ϕ̂+(τ) = P [εt+τ = sign(ε̂t)].

The probability for predicting the opposite sign is ϕ̂−t+τ = 1 − ϕ̂+
t+τ . The “hat” superscript

denotes that the prediction is associated with a particular time series model ε̂t; while ϕ̂ is
related to ϕ+

t as previously defined in Eq. 3 the two quantities are not exactly the same.
We use ϕ̂ because it provides a convenient way to compare the predictive power of the two
models.

Similarly the expected returns r̂+
t+τ and r̂−t+τ associated with the prediction ε̂t are

r̂+(τ) = Et[rt+τ εt|εt+τ = sign(ε̂t)]

r̂−(τ) = −Et[rt+τεt|εt+τ 6= sign(ε̂t)].

A comparison of the predictive power of the two time series models is shown in Figure 6(a),
where ϕ̂+(τ) is plotted as a function of τ for both the linear and colored print models. Not
surprisingly, for all but the shortest values of τ the colored print model makes more accurate
predictions21. The prediction accuracy is good for short values of τ , slowly decaying to zero
as τ increases.

To allow us to see the asymptotic scaling of these results more clearly we compare the
empirically measured predictability to the return asymmetry. For the market to be ob-
servationally efficient at time horizon τ it must satisfy ϕ̂+(τ)r̂+(τ) − ϕ̂−(τ)r̂−(τ) = 0, i.e.
ϕ̂+(τ)/ϕ̂−(τ) = r̂−(τ)/r̂+(τ). We can get an idea for how quickly ∆ goes to zero by compar-
ing the two ratios ϕ̂+(τ)/ϕ̂−(τ) and r̂−(τ)/r̂+(τ). Since in the limit as τ → ∞ both ratios
approach 1, to use logarithmic scale it is convenient to subtract one, so that in the limit
τ → ∞ the resulting quantity goes to zero and power law scaling (if it exists) will appear
as a straight line). This is done in Fig. 6(b). The market is observationally inefficient with

21 For τ < 3 the linear time series model is actually more accurate than the colored print model. This is
not evident in Figure 6(a) due to the fact that we are averaging together different values of τ , but it is
apparent in Figure 6(b) where for small τ there is no averaging.
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FIG. 6: Tests of efficiency and asymmetric liquidity for the linear times model and the colored
print model. In each case the results showed are binned values plotting the average of the values
in a given range of the argument on the horizontal axis. (a) The accuracy of the order flow
prediction ϕ̂+(τ) as a function of the forecast horizon τ measured in number of transactions; (b)
The quantity ϕ̂+(τ)/ϕ̂−(τ)−1 is compared to r̂−(τ)/r̂+(τ)−1, plotted on double logarithmic scale;
to the extent that these don’t agree the market is inefficient. (c) The inefficiency ∆̂(τ). (d) The
cumulative inefficiency

∑τ
i=1 ∆̂(i) measured in units of the average bid-ask spread. (e) The ratio

r̂+/r̂− for the linear and colored print models as a function of the predicted sign ε̂(τ), compared
to the predicted relationship under observed efficiency for τ = 1 and τ = 100. (f) Same as (e) for
τ = 100.

respect to the model ε̂ if ϕ̂+(τ)/ϕ̂−(τ) − 1 6= r̂−(τ)/r̂+(τ) − 1. For the linear time series
model we see that initially ϕ̂+(τ)/ϕ̂−(τ)� r̂−(τ)/r̂+(τ), but by roughly τ = 20 the two are
essentially the same, and they remain that way for τ > 20. In contrast, for the colored print
model the initial inefficiency is not as large, but the convergence to observational efficiency
is much slower, and is not complete until roughly τ = 400.

In Figure 6(c) we plot ∆̂(τ) = ϕ̂+(τ)r̂+(τ) − ϕ̂−(τ)r̂−(τ). ∆̂(τ) decays quickly to zero
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for the linear model and much more slowly for the detailed model. To assess whether
either of these inefficiencies are large enough to permit arbitrage, in Figure 6(d) we plot

the cumulative observed inefficiency
∑τ
i=1 ∆̂(i) in units of the average bid-ask spread. The

cumulative observed inefficiency for the linear model peaks at about 0.2. In contrast the
inefficiency of the colored print model eventually exceeds the average spread, steadily growing
until about τ = 400, where it peaks at about 1.3 spread units. This varies quite a bit from
stock to stock. For three of the stocks (LLOY, RTO and VOD) the cumulative inefficiency
is always less than the spread, whereas for BSY, a lightly traded stock, at its maximum it
rises to 2.8 in units of the average spread.

To measure the observable inefficiency in terms that are directly comparable to the im-
pact, in Figure 7 we plot the cumulative ∆ as a function of n, measuring it in units of the
predicted impact (which also varies with n). For the linear time series model the cumulative
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FIG. 7: The cumulative observable inefficiency
∑
n ∆(n) vs. n, the number of transactions, for

both the linear time series model and the colored print model, for the stock AZN. ∆ is measured
as a fraction of the predicted impact under the assumption ∆ = 0, which also increases with n;
note that it increases faster for the linear time series model than the colored print model.

observable inefficiency grows to roughly half the predicted impact and levels off, whereas
for the colored print model it grows to almost 85% of the total. This suggests that the
observable inefficiency is not negligible in either case, but it is particularly large for the
colored print model. This is in part because for large n the predicted impact grows more
slowly with the colored print model than for the linear time series model.

To explicitly test our assertion that efficiency in the face of predictable order flow is
achieved through asymmetric price response, in Figure 6(e) we test this for the linear model
by plotting the ratio r̂+(τ)/r̂−(τ) as a function of the predicted sign ε̂(τ). We do the same
for the detailed model in Figure 6(f). This is compared to the predicted relationship derived
in Eq. 10. In both cases we observe that for small values of τ the ratio r+/r− does not satisfy
the prediction, but by τ = 100 the observed data are reasonably close to the prediction.
This explicitly demonstrates that efficiency is achieved by an asymmetric price response,
and for sufficiently large times satisfies the predicted efficiency condition.



38

G. Tests of the additive assumption

We now provide empirical tests of the additive assumption, Eq. 18, which states that price
changes caused by new information in order flow only depend on the difference between the
observed order sign and its prediction. As we showed in Section IV, the observable market
efficiency condition implies that the normalized expected returns are linear and symmetric
function of the prediction ε̂ with slopes ±1, i.e. r+/ν0 = 1 − ε̂ and r−/ν0 = 1 + ε̂. It

is not hard to show that the time series predictions should show that when ∆̂ = 0 the
expected returns under the time series models show similar relations, i.e. r̂+/ν0 = 1− ε̂ and
r̂−/ν0 = 1 + ε̂. To test this in Figure 8 we plot r̂+(τ)/ν0 and r̂−(τ)/ν0 versus ε̂(ts) and ε̂(cp)

for AZN.
Testing this relationship is difficult for two reasons. First, it is difficult to distinguish

linear from nonlinear relationships for values close to the origin and this region is precisely
the region where most of the empirical data is located. Second, as shown in Figure 6(a),
returns are not immediately efficient, but become so after a certain length of time. This
means the response of r̂+ and r̂− to ε̂(ts) and ε̂(cp) as shown in Figure 8 is not sufficient to
make market returns efficient – only when using lagged values of ε̂(ts) and ε̂(cp) is the market
efficient. Using longer lags for these variables gives inconclusive results, however, as the
the data become very noisy as τ gets large. We make a compromise and choose τ = 10 for
both order flow models. When we do this we observe linearity, consistent with our prediction
(and indeed this holds true to a good approximation for all values of τ where there is enough
data to measure it. However, the prediction that the slopes should be ±1 is not met very
precisely, as is evident in Table I. The agreement is better for the linear time series model,
where linearity is a good assumption and the slopes are within 30% of 1, than for the colored
print model, where linearity is also fairly well satisfied, but the slopes differ by a factor of
two for r+ and r−.
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FIG. 8: Plot of r+/ν0 and r−/ν0 as a function of the predictor ε̂(ts) from the linear model and the
predictor ε̂(cp) from the colored print model for the stock AZN, using τ = 10. The prediction is
that these should be lines with slopes ±1.

The other prediction we made based on the additive assumption is that the volatility
proxy ν(n) should obey Eq. 21. According to this prediction the volatility should decrease
slightly and approach a constant. The size of the decrease is small, of order (πP)2, which
is typically less than 0.01. For comparison in Figure 9 we plot the average volatility proxy
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ν(n) as a function of the number of executions n. We do this for each stock. As seen in the
figure, in every case ν(n) is roughly constant, consistent with the prediction.
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FIG. 9: ν as a function of n for all stocks in our sample.

H. Trading velocity

Both the linear time series model and the colored print model predict that there should be
a dependence on the participation rate π, or in other words the impact depends on trading
velocity. This means that the total impact depends on the rate of trading. In Figure 10 we
plot the total impact as a function of participation rate for hidden orders in three different
size ranges. In each case we see a similar result: Higher participation rate implies greater
impact. This is in agreement with the linear time series model, and is opposite to what is
predicted by the colored print model.

I. Returns of colored prints vs. other transactions

A clue about whether participants are able to distinguish colored prints from other trans-
actions is to simply compare the returns from colored prints (the transactions associated
with the same hidden order) to other transactions. This is shown as a function of n for the
stocks AZN and VOD in Figure 11. The result is surprising. The returns r+ from the hidden
order decrease (as we would expect, but the returns r+ for the other orders are essentially
flat. This suggests that market participants are able to distinguish transactions coming from
the same hidden order, and that the response for these orders is quite different than that for
other orders. An alternate hypothesis is that there is something else different about these
transactions, e.g. that they are of higher volume, but this is not the case – the average order
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FIG. 10: The impact for AZN is plotted against the participation rate for hidden orders in three
different size ranges. In each case the impact increases with participation rate.
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FIG. 11: The average returns for orders of the same sign as the hidden order are compared to
those from other orders as a function of n, the number of transactions so far for that order. The
data are binned and standard error bars are shown.

size is essentially the same, and changes very little with n. We have shown VOD because
the effect is particularly striking, with a 25% decrease in the average return from n = 1 to
n = 50.
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J. Dependence on time since last colored print

One of the predictions of the colored print model is that the return asymmetry should
be a decreasing function of the number of intervening trades m since the last colored print.
We test this in Figure 12 by plotting r+ and r− as a function of m. There is indeed indeed
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FIG. 12: The expected returns r+ and r− for AZN are plotted against m, the time since the last
colored print.

a tendency for the return asymmetry to decrease. It is worth noting, though, that m = 1
and m = 2, which are not shown because they would not be on the same scale as the rest of
the figure, the return asymmetry is actually opposite to what is predicted, i.e. r+ > r−. We
believe this is because the information about a colored print takes time to be incorporated
into the returns.

K. Tests of market impact

Our purpose in this paper was to derive equations for market impact. Unfortunately, as
we show now, we are not able to make a definitive test at this point in time. There are two
reasons for this. The first is that we do not have enough data, as we show in a moment.
The second is that the excessive splitting of large orders by our reconstruction algorithm
distorts the impacts of large orders. Nonetheless, we do have enough data to at least verify
the concave behavior of the impact and to show that the predictions of our theory are not
rejected by the data.

1. How much data is needed?

Based on the scalings that we have hypothesized and empirically observed it is possible
to estimate the quantity of data that is needed to reasonably determine the functional form
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of the impact. Assume we have Y hidden orders, so that the number of hidden orders with
length N is k(N) = p(N)Y , where p(N) is the probability that an order has length N . For
large N we have presented evidence that p(N) scales as p(N) ∼ (1/α)N−(α+1). Assume
that the size of the impacts is a long-memory process with Hurst exponent H and single
transaction volatility ν0. Then under standard results for long-memory processes (Beran,
1994) the absolute error E(N)/ν0 for orders of length N scales as

E(N)

ν0

≈ σ(N)

ν0k(N)1−H ≈
N1/2α(1−H)

N−(1+α)(1−H)Y (1−H)
=
(
α

Y

)(1−H)

N1/2+(1+α)(1−H) (62)

For example, with H = 0.75 the absolute error increases as N1.125. Even worse, the absolute
error only decreases with the number of data points as Y −0.25. So even with a data set
containing a million hidden orders, the absolute error for a hidden order of length 100 is
the order of one. Thus it takes a great deal of data to be able to accurately distinguish the
functional form of the average market impact.

2. Empirical tests of market impact

The calculation above suggests that with the limited quantity of data we have here we are
unlikely to be able to get a clear result concerning the functional form of the market impact.
It is nonetheless interesting to at least make the attempt. For purposes of the theory we
will assume that the distribution of order size volume scales as a power law with exponent
α As reported in Section V A, under this assumption the linear time series model predicts
that market impact should scale with hidden order size N as a power law with exponent
1 − φ, where φ = (2 − α)/2. In contrast, as reported in Section V B 3, the detailed model
of hidden order executions predicts that market impact should scale with hidden order size
N as (logN)2. To facilitate combining the data we divide each data point by the predicted
scale factors given in Eqs. 35 and 45. In Figure 13 we plot the scaled impact of all hidden
orders as a function of order size N and compare to the predictions. Note that when we
do this we are not fitting any free parameters – all the parameters are determined based
on independent measurements. From the result it appears that the linear model provides
a worse fit. However, it should be born in mind that the error bars are quite large – the
standard errors shown in the figure underestimate the errors. (A better error analysis will
be presented in a later version of the paper).

VII. CONCLUSIONS

A. Summary

We have developed a theory for market impact that is based on the assumption of effi-
ciency under predictable order flow. To fully describe the predictability of the order flow
it is necessary to describe its intrinsic predictability, and to specify the information and
models of participants. We have investigated several different options and shown how they
affect the impact. We provide a summary of the assumptions and discuss some of the main
conclusions below:
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FIG. 13: (a) Scaled hidden order return, (Rθφ(1 − φ))/(εν0), as a function of size, N , averaged
over all stocks in our sample. This is compared to the predicted relation from the linear time series
model. (b) Scaled hidden order return, R/(αεν0), as a function of size, N , averaged over all stocks
in our sample. This is compared to the predicted relation from the colored print model.

• Origin of the predictability of order flow. For the development of the theory we have
assumed that order splitting of large hidden orders is the primary cause of the pre-
dictability of order flow. As discussed in Section VI, based on studies in several
different markets, we think the empirical evidence for this assumption is strong.

• Hidden order signs. We assume the signs of hidden orders are IID. For the stocks in
our sample the empirical support is good (see Figure 5 and Table I).

• Volume distribution of hidden orders. The empirical evidence that hidden order sizes
are drawn from a power law distribution is good (see Section VI). We also investigate
the alternative hypothesis of a stretched exponential distribution, which is not well
supported by the data, and show that this makes a substantial difference in the results.
Thus the heavy tails of the volume distribution are a key factor in determining the
shape of the impact.

• Uniform order splitting. We assume that hidden orders are split into pieces of roughly
the same size, independent of the position n within the hidden order. The evidence
for this in the Spanish and London stock markets is good22 Vaglica (2007). We also
assume that large orders are executed at the same rate as small orders. There is a
small observed empirical deviation from this (in Spain and London large hidden orders
are executed more slowly than small orders). This deviation is not large, however, and
we think that uniform order splitting is still a good assumption.

• Participant order flow model. We have presented two possible models, a linear time
series model of order flow signs and a colored print model, in which participants are
able to link the identities of transactions from hidden orders. At this stage it is not
clear which of the two models is more appropriate; see the discussion in the next
section.

22 The evidence for London is based on work that is not yet published.



44

• Observed inefficiency. A nonzero contribution to the observed inefficiency ∆ can come
either from the information term χ or from a failure of participants to fully exploit
arbitrage opportunities – we are unable here to distinguish these two causes. For the
linear time series model, for lags of more than 20 transactions the observed inefficiency
is reasonably small (see Section VI F). For the colored print model, in contrast, the
observed inefficiency is much larger, and in several cases becomes larger than the
spread, as shown in Fig. 6. The lags to achieve efficiency are much longer, the
order of several hundred transactions, and in relative terms the cumulative observable
inefficiency continues to grow with time, so that by n = 100 it is a significant fraction
of the predicted impact, as seen in Figure 7.

• Additivity assumption The additivity assumption states that the price response is
proportional to the new information in order flow, measured as the difference between
the observed order sign and the expected order sign. This is fairly well supported for
the linear time series model and somewhat less well supported for the colored print
model. At this stage we cannot say with certainty whether the deviations are within
statistical error; better data analysis is needed. However, based on standard errors it
seems that linearity is well-supported, but the prediction from Eq. 22 that the slopes
should be plus one and minus one are not well supported. This may be in part because
this depends on the volatility proxy ν0. For the colored print model, however, it seems
that that the slope for r+ is significantly different from the slope for r−, so the additive
assumption is not well satisfied.

• Asymptotically constant volatility. One of the predictions of the additivity assumption
is that the volatility is asymptotically constant, i.e. that as a function of n the overall
scale of the price responses should initially decrease and then approach a constant
value. This has good empirical support (see Figure 9). Note, though, that the ad-
ditivity assumption is not the only hypothesis that leads to asymptotically constant
volatility.

• Asymmetric liquidity. In order for the strong temporal correlation of order flow to
be compatible with observable efficiency, our model predicts the liquidity must be
asymmetric, in the sense that transactions with the same sign as the hidden order
produce a smaller price response than orders of the opposite sign, with this effect
becoming stronger as the order progresses. The empirical support for this is very
good, and is clearly observed for every stock in the sample (see Fig. 6(f)).

• Velocity dependent impact. Both participant order flow models predict a velocity
dependent term in the impact function. The linear time series model predicts that the
impact increases with trading velocity, whereas the colored print model predicts that
it decreases with trading velocity. The former prediction is clearly more reasonable, in
the sense that slower execution is less desirable than rapid execution, and one would
naturally expect to pay a penalty for rapid execution. This is strongly born out in the
data; see Figure 10.

• Reversion of market impact. The framework we have introduced makes it possible to
predict the reversion of market impact when a trade is finished. The linear time series
model predicts complete reversion, in line with the theory of Bouchaud et al. (2004).
The colored print model predicts that the impact is partially temporary and partially
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permanent. We have not addressed this question empirically yet (there are some
subtleties in the analysis and we did not feel our preliminary results were sufficiently
reliable to present). This is an important question that needs to be more carefully
resolved in the future.

To give insight into the effect of each assumption, we have made an effort whenever
possible to analyze alternatives, even when we think they are not well supported by the
data. Table II presents a summary of the predictions under different possibilities. All of
these assume uniform order splitting and the additivity of information.

Volume distribution Order flow model End detection Predicted impact Permanence
Stretched exponential Linear T.S. N.A. N yes
Power law Linear T.S. (K =∞) N.A. N1−φ no
Power law Linear T.S. (K <∞) N.A. N yes
Stretched exponential Colored print Given Nβ yes
Power law Colored print Given logN yes
Power law Colored print Bayesian, Poisson (logN)2 yes

TABLE II: Predicted impact under different combinations of the assumptions made in this paper
as described in the text. Volume distribution refers to the underlying distribution of hidden order
volumes; Order flow model refers to the method that participants use for predicting order flow;
End detection refers to the method they use for determining when a hidden order has finished;
Predicted impact is the scaling of the impact with the length N of the order for large N , and
Permanence refers to whether or not the impact has a permanent component. Linear T. S. refers
to the linear time series model, and K is the order of the model. All of the cases assume uniform
order splitting and the additive assumption, and that the observable inefficiency is going to zero
for large n. Note that the power law distribution for volume is empirically well-supported and the
stretched exponential is not.

B. Discussion

In this paper we have attempted to lay out a framework for understanding the impact
of large orders. The method we have used to do this can be compared to that of Black and
Scholes for pricing options. That is, the two key elements of their method are an assumption
about the random process followed by the underlying price and then the imposition of the
requirement that there be no arbitrage. Similarly, we have made an assumption about the
underlying distribution of volumes of hidden orders and then assumed that there should
be no arbitrage between liquidity providers and liquidity takers. As summarized in the
previous section, we have also had to make some other assumptions, such as uniform order
splitting, additivity of new information, and an assumption about the participant model of
order flow. Ultimately we think that it should be possible to derive most of these additional
assumptions on more fundamental grounds. For example, the volume distribution of hidden
orders is likely influenced by factors such as the distribution of fund sizes and the need
for fund managers to minimize transactions costs, and can potentially be computed in an
equilibrium model. Similarly, the assumption of uniform order splitting can potentially be
derived as a rational choice. Of course, this needs to be done self-consistently with the model
of market impact, and is not likely to be a trivial exercise.
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In developing our theory we have attempted as much as possible to formulate everything
in terms of quantities that are empirically measurable. For example, the distribution of
trade volumes can be inferred from the correlations in order flow and by comparing block
and order book markets, and thus we feel that this is a better basis for a theory that
assumptions that depend on the functional form of utility, which are more or less arbitrary
and difficult to verify empirically. This has allowed us to jump over several steps and to
identify the elements of the theory that seem to be well-supported and those that are not,
and as described in the previous paragraph, to indicate future topics of research that can
further reduce the number of assumptions.

The most difficult component of the theory to observe is the participant model of order
flow. We have made two extreme assumptions. At one end of the spectrum we assume the
use of a linear time series model, and at the other we assume the colored print model. The
colored print model is rational, but as we discuss later, the linear time series model is not.
Under the colored print model participants are able to see which transactions come from
the same hidden order, and to know how many previous transactions each hidden order
has had. They must still infer when hidden orders end, which we have shown has several
important consequences. We suspect that the truth lies somewhere in between. While many
participants are probably very good at anonymizing their order flow, others are clearly not.
We have examined the order flow on an anecdotal basis, and have found participants who
leave clear marks for their presence, such as consistent use of limit orders of the same size
and order placement at regular time intervals. Thus the order flow model may be diverse.

One of our surprising results is that even if we assume that the only available information
is the time series of order signs, and even neglecting statistical estimation errors in setting
parameters, the use of an infinite order time series model is not an optimal model, i.e. it
is not rational in the usual sense. This is because the random process for order placement
postulated by LMF (Lillo, Mike and Farmer, 2005) has nonlinear structure. When a long
hidden order stops the optimal strategy is to reset the memory of the model, since the history
of that order is no longer relevant. We have shown that in certain situations it is inherently
better to reduce the order of the model. This has important consequences for both the
functional form of the impact and in whether the impact is permanent or temporary (and
is the reason for distinguishing the cases K =∞ and K <∞ in Table II). At this stage we
cannot derive an optimal model for predicting order flow under the LMF framework.

One of the problems with the framework we have developed here is the need to assume
that the direct information terms χt are zero. At this stage we have no way to measure these
terms except in combination with the efficiency. The observable inefficiency ∆ measures the
combination of real inefficiencies and information terms. We can measure this combination
but we cannot measure each of the components separately. We are working on methods of
breaking these two terms apart.

In presenting our empirical analysis we have been able to gain considerable understanding
of the factors influencing impact, but we still do not have the final story. There are two
main problems. The first is that, as we have shown in Section VI K 1, because market impact
becomes increasingly noisy for large N , the data requirements for an accurate measurement
are considerable. The second is that the method we are using for detecting hidden orders is
not optimal and has a tendency to unduly split large orders. We plan to redo all the analysis
using a less biased method, but since developing such an algorithm is a significant project
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unto itself we have deferred this to a future paper23. It is also possible to use data in which
there is detailed information at the level of trading accounts. Such data exists [Chan and
Lakonishok, (1995), Odean et al. (2004), thus all the elements of this theory are empirically
testable even without relying on participant identification algorithms.

In conclusion, we have introduced several new ideas about the causes of market impact.
Once each of the elements of the theory are understood it should be possible to predict
the functional form of market impact, including its dependence on trading velocity, and to
quantitatively understand the extent to which impact is temporary or permanent. This is
significant in providing a new approach to computing market impact that integrates the
informational view of price formation with the more classic supply and demand approach.
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