Measuring GDP, Inflation, and Unemployment

GDP, Inflation, and Unemployment

• The 3 major macroeconomic performance indicators
• Definitions & measurement
• Flows & Stocks
 – Flows: measured per period of time
 • income statement
 – Stocks: measured at a point in time
 • balance sheet

A Simple Model of the Economy

• Assumptions
 – Only business firms and households
 – Only business firms produce goods & services
 – Only households own factors of production
 – There is no savings; there is no investment
 » Figure 2-1

Figure 2-1
The Circular Flow of Income and Consumption Expenditures

A Simple Model of the Economy

• Conclusions
 – Income (Y) = Factor payments
 – Consumption (C) = Production
 – Income (Y) = Consumption expenditures (C)
 – Income (Y) = Production of goods and services

 – Output can be measured from either:
 • the income side, or
 • the product side

Extending the Simple Model

• Gross Private Domestic Investment
 – Adds to the economy’s stock of income-yielding assets
 – Classification
 • Fixed Investment
 – Business Investment
 » Structures
 » Equipment
 – Residential Investment
 • Inventory Investment
Extending the Simple Model

• Assumptions
 – Only business firms and households
 – Only business firms produce goods & services
 – Only households own factors of production
 – Households can save
 – Business firms can invest
 » Figure 2-3

Extending the Simple Model

• Development of the Capital Markets
 – Households buy stocks and bonds issued by the business firms
 – Households deposit savings in financial institutions that lend the money to business firms

Extending the Simple Model

• Conclusions
 – Savings “leaks” from the income/consumption stream
 – Investment “injects” spending back into the system
 – Leakages and injections must equal

Extending the Simple Model

• Net Exports
 – Exports: domestic production/foreign sales
 • creates domestic income, not spending
 – Imports: foreign production/domestic sales
 • creates domestic spending, not income
 – Net exports: exports - imports
 • a component of GDP
 • if exports > imports, then GDP is higher
 • if exports < imports, then GDP is lower
 – Net foreign investment

Extending the Simple Model

• Government
 – Types of expenditures
 • government purchases
 • transfer payments
 – Classification of government purchases
 • Federal government
 – Defense
 • State government
 • Local government
 » Figure 2-4
Extending the Simple Model

• With equations
 \[Y = E \]
 \[E = C + I + G + NX \]
 \[Y + F = C + S + R \]
 \[Y = C + S + (R - F) \]
 \[Y = C + S + T \]

Extending the Simple Model

• Government Budget Deficit
 \[G - T = S - (I + NX) \]

• Increased budget deficit can be financed by
 – more private savings
 – less private investment
 – less foreign investment/more foreign borrowing

Measuring GDP

• National Income & Product Accounts
 – NIPA or National Accounts
 – Accounting for all of the flows of income and expenditures in the economy

Measuring GDP

• Defining GDP:
 – all currently produced goods and services that are sold through the market (but are not resold)
 – Currently produced
 • No used products
 • No transfer payments
 • No capital gains
Measuring GDP

• Defining GDP (continued)
 – Sold on the market
 • No value of non-paid personal time
 • No externalities
 • No illegal activities
 • The puzzling case of consumer durable spending
 • The puzzling case of government expenditures

– But not resold
 • during the current time period
 • intermediate versus final goods
 • double counting versus value added
 » Figure 2-2

Measuring GDP

• GDP versus GNP
 – GDP: goods and services produced in the US regardless of who owns the factors of production
 – GNP: goods and services produced by US owned factors of production regardless of where the production takes place
 – GNP < GDP

Measuring GDP

• Real versus Nominal Magnitudes
 – Nominal magnitudes: include price effects
 – Real magnitudes: strip price effects out
 • expressed in the prices of an arbitrarily chosen base year, currently 1992

• Calculating GDP
 – must add together all goods and services
 – must use prices to get values
 – since prices change, real GDP will depend on what prices we pick
Measuring GDP

<table>
<thead>
<tr>
<th>Oranges</th>
<th>Apples</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>PQ</td>
</tr>
<tr>
<td>Year 1</td>
<td>$0.10</td>
<td>20</td>
</tr>
<tr>
<td>Year 2</td>
<td>$0.20</td>
<td>20</td>
</tr>
</tbody>
</table>

Measured at Year 1 Prices

<table>
<thead>
<tr>
<th>Oranges</th>
<th>Apples</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>PQ</td>
</tr>
<tr>
<td>Year 1</td>
<td>$0.10</td>
<td>20</td>
</tr>
<tr>
<td>Year 2</td>
<td>$0.20</td>
<td>20</td>
</tr>
</tbody>
</table>

Measured at Year 2 Prices

<table>
<thead>
<tr>
<th>Oranges</th>
<th>Apples</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>PQ</td>
</tr>
<tr>
<td>Year 1</td>
<td>$0.10</td>
<td>20</td>
</tr>
<tr>
<td>Year 2</td>
<td>$0.20</td>
<td>20</td>
</tr>
</tbody>
</table>

Geometric mean (year 2) = 1.13

Measuring Inflation

<table>
<thead>
<tr>
<th>Oranges</th>
<th>Apples</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>PQ</td>
</tr>
<tr>
<td>Year 1</td>
<td>$0.10</td>
<td>20</td>
</tr>
<tr>
<td>Year 2</td>
<td>$0.20</td>
<td>20</td>
</tr>
</tbody>
</table>

Measured at Year 1 Quantities

<table>
<thead>
<tr>
<th>Oranges</th>
<th>Apples</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>PQ</td>
</tr>
<tr>
<td>Year 1</td>
<td>$0.10</td>
<td>20</td>
</tr>
<tr>
<td>Year 2</td>
<td>$0.20</td>
<td>20</td>
</tr>
</tbody>
</table>

Measured at Year 2 Quantities

<table>
<thead>
<tr>
<th>Oranges</th>
<th>Apples</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>PQ</td>
</tr>
<tr>
<td>Year 1</td>
<td>$0.10</td>
<td>20</td>
</tr>
<tr>
<td>Year 2</td>
<td>$0.20</td>
<td>20</td>
</tr>
</tbody>
</table>

Geometric mean (year 2) = 1.60

Measuring Unemployment

- Survey 60,000 households monthly
 - 25% rotation
- Employment Status of the Population
 - Total labor force
 - Military
 - Civilian labor force
 - employed
 - unemployed
 - Not in labor force
Measuring Unemployment

- **The Unemployment Rate:**
 - Ratio of the number of people unemployed to the number in the labor force, expressed as a percentage

\[
\text{Unemployment Rate} = \frac{\text{unemployed}}{\text{civilian labor force}} \times 100
\]

- **Shortcomings of the Unemployment Rate**
 - What does it mean to be employed?
 - Involuntary part-timers
 - What is the cost of unemployment?
 - Family head or teenager?
 - Does anybody fall through the cracks?
 - Discouraged workers

- **Do these Shortcomings Matter?**

Measuring Unemployment

- **Labor Force Participation Rate:**
 - The ratio of the number of people in the labor force to the adult population, expressed as a percentage

\[
\text{LFPR} = \frac{\text{Labor Force}}{\text{Adult Population}} \times 100
\]

- **Employment-Population Ratio:**
 - The ratio of the number of people employed to the adult population, expressed as a percentage

\[
\text{EPR} = \frac{\text{Employed}}{\text{Adult Population}} \times 100
\]

GDP and Unemployment

- **Okun’s Law**
 - There is a close negative relationship between
 - the output ratio, \(Y/Y(n)\), and
 - the unemployment rate
 - The percentage point change in the unemployment rate is approximately 1/2 times the percentage point change in the output ratio, but in the opposite direction

Figure 2-6

The U.S. Ratio of Actual to Natural Real GDP (\(Y/Y(n)\)) and the Unemployment Rate, 1965–96
Okun’s Law

\[U = U(n) - h \times (100 \times (Y / Y(n)) - 100) \]

<table>
<thead>
<tr>
<th>U</th>
<th>U(n)</th>
<th>h</th>
<th>Y / Y(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>6.2</td>
<td>0.5</td>
<td>0.90</td>
</tr>
<tr>
<td>8.7</td>
<td>6.2</td>
<td>0.5</td>
<td>0.95</td>
</tr>
<tr>
<td>6.2</td>
<td>6.2</td>
<td>0.5</td>
<td>1.00</td>
</tr>
<tr>
<td>3.7</td>
<td>6.2</td>
<td>0.5</td>
<td>1.05</td>
</tr>
<tr>
<td>1.2</td>
<td>6.2</td>
<td>0.5</td>
<td>1.10</td>
</tr>
</tbody>
</table>