The Simple Keynesian Theory

• Some Basic Definitions
 – Endogenous variables
 • Output
 • Consumer Spending
 – To become endogenous variables
 • Investment spending
 • Net exports
 • Interest rates
 • Inflation

The Simple Keynesian Theory

• Some Basic Definitions (continued)
 – Exogenous variables (continued)
 • Demand shocks
 – Unpredictable changes in
 » Consumer spending
 » Investment spending
 » Net exports
 † Foreign economic activity
 – Abrupt changes in technology
 – Changes in regulations
 – Wars
 – Political crises

The Simple Keynesian Theory

• Some Basic Definitions (continued)
 – Exogenous variables
 • Policy instruments
 – Money supply
 – Government spending
 – Tax rates

The Simple Keynesian Theory

• Determining Equilibrium Income
 – By definition
 \[E = C + I + G + NX \]
 – Now assume
 • C, G and NX are always equal to planned
 • Only I can differ from planned
 \[I = I(p) + I(u) \]
 • Therefore
 \[E(p) = C + I(p) + G + NX \]
The Simple Keynesian Theory

• Determining Equilibrium Income (con’t)
 – The Consumption Function
 • Autonomous consumption
 • Induced consumption
 – marginal propensity to consume
 • General linear form

\[C = a + c \, (Y - T) \]

» Figure 3-1

The Simple Keynesian Theory

• Determining Equilibrium Income (con’t)
 – The Savings Function
 • Autonomous saving
 » Figure 3-3
 • Induced saving
 – marginal propensity to save
 • General linear form

\[S = (Y - T) - C \]

\[= (Y - T) - (a - c) \, (Y - T) \]

\[= a - (1 - c) \, (Y - T) = -a + s \, (Y - T) \]

The Simple Keynesian Theory

• Determining Equilibrium Income (con’t)
 – Consumption & Savings (Figure 3-2)

\[(Y - T) = C + S \]

\[= a + c \, (Y - T) - a + s \, (Y - T) \]

\[= (c + s) \, (Y - T) \]

\[(c + s) = (Y - T) / (Y - T) \]

\[= 1 \]

so \[c + s = 1 ; \ c = 1 - s ; \ s = 1 - c \]

Figure 3-1
A Simple Hypothesis Regarding Consumption Behavior

Figure 3-2
The Relation Between Induced Consumption, Induced Saving, and the Consumption Function

Figure 3-3
Consumption, Saving, and Disposable Income, 1929–96
The Simple Keynesian Theory

- Determining Equilibrium Income (con’t)
 - Equilibrium
 - Equilibrium is a situation in which there is no pressure for change
 - Total Planned Expenditures
 \[E(p) = C + I(p) + G + NX \]
 \[= a + c(Y - T) + I(p) + G + NX \]
 \[= a + cY - cT + I(p) + G + NX \]

 - Figure 3-4

The Simple Keynesian Theory

- Determining Equilibrium Income (con’t)
 - Equilibrium (continued)
 - Autonomous Planned Spending
 \[A(p) = a - cT + I(p) + G + NX \]
 - Total Planned Expenditures
 \[E(p) = A(p) + cY \]

The Simple Keynesian Theory

- Determining Equilibrium Income (con’t)
 - Disequilibrium Dynamics (continued)
 - Example
 - Figure 3-5
 - Does \(I(u) \) need to be reversed?

The Simple Keynesian Theory

- Determining Equilibrium Income (con’t)
 - Equilibrium (continued)
 - It is always true that
 \[Y = E \]
 \[Y = E(p) + I(u) \]
 - where \(I(u) \) is unintended inventory investment
 - Equilibrium exists only when
 \[Y = E(p) \quad \text{or} \quad I(u) = 0 \]
The Simple Keynesian Theory
• Determining Equilibrium Income (cont’d)
 • Equilibrium (continued)
 • Autonomous planned spending equals induced saving in equilibrium
 \[Y = E(p) \]
 \[Y - cY = E(p) - cY \]
 \[(1 - c)Y = A(p) \]
 remember
 \[s = 1 - c \]

The Simple Keynesian Theory
• Autonomous planned spending equals induced saving in equilibrium (continued)
 \[sY = A(p) \]
 \[\text{Induced saving} = \text{autonomous spending} \]
 \[\text{Leakages} = \text{injections} \]
 \[Y(e) = A(p) / s \]

The Simple Keynesian Theory
• The Multiplier Effect
 • An example
 • Calculating the Multiplier
 • How much does income change?
 \[Y(1) = A(p)(1) / s \]
 \[Y(0) = A(p)(0) / s \]
 \[\text{Change in} \ Y = \text{Change in} \ A(p) / s \]

The Simple Keynesian Theory
• The Multiplier (continued)
 \[k = \frac{\text{Change in} \ Y}{\text{Change in} \ A(p)} \]
 \[\text{from} \]
 \[\text{Change in} \ Y = \text{Change in} \ A(p) / s \]
 \[k = \frac{\text{Change in} \ A(p)}{s} / \text{Change in} \ A(p) \]
 \[k = 1 / s \]
 • Relationship between leakages and the multiplier?
 \[\text{Figure 3-6} \]

The Simple Keynesian Theory
• Fiscal Policy
 • Fiscal Policy Definitions
 • Changes in government spending
 • Changes in autonomous tax revenues
 • Changes in tax rates
 • Now
 \[A(p) = a - cT + I(p) + G + NX \]
The Simple Keynesian Theory

• Government Spending Multiplier
 – If
 \[\text{Change in } Y = \frac{\text{Change in } A(p)}{s} \]
 – then
 \[\text{Change in } A(p) = \text{Change in } G \]
 \[\text{Change in } Y = \frac{\text{Change in } G}{s} \]
 \[k = \frac{\text{Change in } G / s}{\text{Change in } G} = \frac{1}{s} \]

The Simple Keynesian Theory

• Government Spending Multiplier (con’t)
 – The Government Budget Deficit
 \[(G - T) = S - I - NX \]
 \[\text{Change in } G - \text{Change in } T = \text{Change in } S - \text{Change in } I - \text{Change in } NX \]
 \[\text{but} \]
 \[\text{Changes in } T, I, \text{and } NX = 0 \]
 \[\text{therefore,} \]

The Simple Keynesian Theory

• The Tax Multiplier
 – Autonomous Taxes
 \[\text{Change in } A(p) = -c \left(\text{Change in } T \right) \]

The Simple Keynesian Theory

• The Tax Multiplier (continued)
 – Autonomous Tax Multiplier
 \[k(T) = \frac{\text{Change in } Y}{\text{Change in } T} \]
 \[\text{Remember} \]
 \[\text{Change in } Y = \frac{\text{Change in } A(p)}{s} = \frac{-c \left(\text{Change in } T \right)}{s} \]
 \[\text{therefore} \]
 \[k(T) = -\frac{c}{s} \left(\text{Change in } T \right) / s \left(\text{Change in } T \right) = -\frac{c}{s} \]

The Simple Keynesian Theory

• Balanced Budget Multiplier
 \[k(G) = \frac{1}{s} \& \ k(T) = -\frac{c}{s} \]
 – therefore,
 \[k(G) + k(T) = \left[\frac{1}{s} \right] + \left[-\frac{c}{s} \right] = \left[\frac{1 - c}{s} \right] / s = \frac{s}{s} = 1 \]
 – Figure 3-7
The Simple Keynesian Theory

• The Tax Multiplier (continued)
 – Effect of Income Taxes (continued)
 • Autonomous taxes
 • Induced taxes
 • General linear form

\[T = T(a) + tY \]

• Now
\[YD = Y - T \]
\[= Y - T(a) - tY \]
\[= (1 - t) Y - T(a) \]

The Simple Keynesian Theory

• The Tax Multiplier (continued)
 – Effect of Income Taxes (continued)
 • Induced consumption

\[C = a + c(Y - T) \]
\[= a + c(Y - T(a) - tY) \]
\[= a + c(1 - t)Y \]

The Simple Keynesian Theory

• The Tax Multiplier (continued)
 – Effect of Income Taxes (continued)
 • Induced saving

\[S = (Y - T) - C \]
\[= Y - T(a) - tY - a - c(1 - t)Y \]
\[= a + (1 - t)Y - c(1 - t)Y \]
\[= -a + (1 - c)(1 - t)Y \]
\[= -a + s(1 - t)Y \]

The Simple Keynesian Theory

• The Tax Multiplier (continued)
 – Effect of Income Taxes (continued)
 • Total induced changes

\[\frac{c(1 - t) + s(1 - t) + t}{(c + s)(1 - t) + t} = \frac{(1 - t) + t}{1} \]
The Simple Keynesian Theory

• The Tax Multiplier (continued)
 – Equilibrium Income with Income Taxes
 \[Y = E(p) \]
 \[Y - c (1 - t) Y = E(p) - c (1 - t) Y \]
 \[[1 - c (1 - t)] Y = A(p) \]
 • so
 \[Y(e) = A(p) / [1 - c (1 - t)] \]
 \[= A(p) / [s (1 - t) + t] \]

The Simple Keynesian Theory

• The Tax Multiplier (continued)
 – Income Taxes and the Multiplier
 Change in \(Y = \frac{\text{Change in } A(p)}{s (1 - t) + t} \)
 • so
 \[k = \frac{1}{s (1 - t) + t} \]
 • or
 \[= \frac{1}{\text{marginal leakage rate}} \]

The Simple Keynesian Theory

• The Tax Multiplier (continued)
 – Income Taxes, the Multiplier and Stabilization Policy
 – Income taxes reduce the size of the multiplier
 – A smaller multiplier means business cycles are dampened
 – Income taxes are an automatic stabilizer.
 – \(Y(e) \) changes when tax rates change
 – \(Y(e) \) increases when tax rates are reduced
 – \(Y(e) \) decreases when tax rates are increased

The Simple Keynesian Theory

• The International Trade Multiplier
 – Autonomous net exports
 • exports
 • autonomous imports
 – Induced net exports
 • imports
 – General linear form
 \[NX = NX(a) - nxY \]

The Simple Keynesian Theory

• The International Trade Multiplier
 – The multiplier now becomes
 \[k = \frac{1}{s (1 - t) + t + nx} \]
 – The multiplier becomes smaller the larger is the economy’s elasticity to import.
The Simple Keynesian Theory

- Summarizing the Multiplier
 \[k = 1 / \text{marginal leakage rate} \]

<table>
<thead>
<tr>
<th>Types of leakages</th>
<th>Marginal leakage rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saving only</td>
<td>(s)</td>
</tr>
<tr>
<td>Saving and income tax</td>
<td>(s(1 - t) + t)</td>
</tr>
<tr>
<td>Saving, income tax, and imports</td>
<td>(s(1 - t) + t + nx)</td>
</tr>
</tbody>
</table>

- Implications for business cycles
- Implications for stabilization policy