The Theory of Economic Growth

Economic Growth
• The Importance of Economic Growth
 – Growth of real GDP per capita
 • A measure of standards of living
 • Small changes make large differences over long periods of time
 – The causes and consequences of sustained increases in natural real GDP per capita
 • Debates over the allocating the pie when it is growing rapidly versus slowly

Economic Growth
• Standards of Living as the Consequence of Economic Growth
 – The Poor United Kingdom
 – Economic Growth: Something for Nothing?

Economic Growth
• The Production Functions & Growth
 – Introduction to Neoclassical Theory
 • Output growth comes from 2 components:
 – Growth in factor inputs
 – Growth in output relative to growth in factor inputs
 – The Production Function
 • The production function is the relationship between:
 – Output, Y
 – Autonomous growth factor, A, and
 – Factor inputs, K and N
 \[Y = A \cdot f(K, N) \]

Economic Growth
• The Production Function & Growth (con’t)
 – Output per Person and the Capital-Labor Ratio
 \[\frac{Y}{N} = A \cdot f\left(\frac{K}{N}\right) \]
 • Only 2 sources of growth in output per capita
 – Autonomous growth factor, A, assumed to be fixed
 – Ratio of capital to labor, K / N,
 » Figure 9-1
 » Subject to diminishing returns
 • Reveals sources of growth but does not explain why they are different between countries or over time.
 – Also why A(0) rather than A(1)
Economic Growth

- The Production Function & Growth (con’t)
 - Saving, Investment, and the Growth in Capital per Person
 - Savings
 \[S + (T - G) = I + NX \]
 or
 \[S(n) = I \]
 assuming \(NX = 0 \)

- Savings
 \[S + (T - G) = I + NX \]
 or
 \[S(n) = I \]
 assuming \(NX = 0 \)

- Investment
 \[I = \delta K + d * K \]
 where \(d \) = average depreciation rate
 Now \(I = (K * \delta K / K) + d * K \)
 \[I = [(\delta K / K) + d] * K \]
 or \(I = (k + d) * K \)

- A steady state occurs when \(Y \) and \(K \) grow at the same rate, implying a fixed ratio of \(Y \) to \(K \)
 - Requires
 \[y = k = n \] with \(A = A(0) \)
 - When these conditions are true economy stays at a fixed position on the per capita production function

Economic Growth

- The Production Function & Growth (con’t)
 - Saving & Investment in the Steady State
 - A steady state occurs when \(Y \) and \(K \) grow at the same rate, implying a fixed ratio of \(Y \) to \(K \)
 - Requires
 \[y = k = n \] with \(A = A(0) \)
 - When these conditions are true economy stays at a fixed position on the per capita production function

- Solow’s Theory of Economic Growth
 - The Harrod-Domar model of economic growth keeps all of these variables constant
 - But each variable is determined by very different factors
 - Solow flipped the equation
 \[s * (Y / K) = n + d \]
 \[s * (Y / N) = (n + d) * (K / N) \]
Economic Growth

- Solow’s Theory of Growth (continued)
 National savings per person,
 \[s \times \left(\frac{Y}{N} \right) \]
 =
 Steady-state investment per person,
 \((n + d) \times \left(\frac{K}{N} \right) \)
 – that is how much capital is needed for each additional worker plus how much capital is needed to replace depreciation.

- Solow’s Theory of Growth (continued)
 – Graphically
 - Per person production function and per person savings function
 » Figure 9-2a
 - Steady-state investment per person
 » Figure 9-2b
 – Equilibrium
 » Figure 9-3
 – Disequilibrium dynamics

- Solow’s Theory of Growth (continued)
 – Effects of a Higher Saving Rate
 » Figure 9-4
 - Equilibrium moves from E(0) to E(1)
 - At E(1)
 - \(K(1) / N(1) > K(0) / N(0) \)
 - \(S / N \) and \(Y / N \) are fixed
 - \(y = k = n \)
 - A rise in the saving rate temporary increase \(y \) as \(I \) rises enough to raise \(K \) and \(Y / N \) but then \(y = k = n \)
 - Long-run versus short-run dilemma
Economic Growth

• Technology in Theory and Practice
 – Two Types of Technological Change
 • Labor Augmenting Technological Change
 – Makes workers more efficient
 • Neutral Technological Change
 – Makes both workers and capital more efficient
 – The “Solow Residual”
 – We can measure “a” from
 \[y - n = a + b * (k - n) \]
 – “a” accounts for nearly 90% of \(y / n \)

• Major Puzzles with Solow Growth Theory
 – Income per capita varies too much across countries
 – Poor countries do not have a higher rate of return on capital
 – The facts about immigration differ from the model’s implications
 – Convergence has not been uniform

• Endogenous Growth Theory
 – Trying to Endogenize “A”
 – The Interpretation of Capital
 • Returns to capital do not diminish
 – Still a problem if all capital is alike and freely mobile
 • Human capital versus physical capital
 – Physical capital may be mobile but human capital is not

• Endogenous Growth Theory (continued)
 – The Production of Ideas
 • Rely by monopoly power reinforced by patents and copyrights
 • The concept of ideas helps explain
 – The introduction of new goods
 – The development of better production techniques
 – The development of higher quality
 • Requires the associated investment in physical and human capital
Economic Growth

• Endogenous Growth Theory (continued)
 – Empirical Studies and Policy Implications
 • Faster growth is associated with
 – higher rates of investment
 » either private or government sector
 – relatively low government consumption
 – greater educational attainment
 – greater political stability
 – lower fertility
 • Policy Implications
 – Tax private consumption, restrain public consumption
 – Promote public and private investment

• CASE STUDY: The Economic Miracle of the Four Tigers
 – Growth rates, 1960 - 1990
 • Philippines, about 2% per year
 • China, Japan, Indonesia, Malaysia, Thailand, 3 - 5%
 • Hong Kong, Korea, Taiwan, Singapore, > 6%
 > Figure 9 - 6

• CASE STUDY: The Economic Miracle of the Four Tigers (continued)
 – Growth in Factor Inputs or in Multifactor Productivity?
 • Extensive growth, growth in factor inputs
 – Rapid capital accumulation
 – Rapid increase in labor force
 • Intensive growth, growth in multifactor productivity
 – Very strong
 • Conclusion: both

• CASE STUDY: The Economic Miracle of the Four Tigers
 – Did Public Policy Play a Role?
 • Market-promoting policies
 – encourage free markets, minimize government
 – provide infrastructure
 – promote education and income equality
 – encourage foreign investment and exports
 • Market-interfering policies
 – subsides to investment and exports
 – import barriers and capital controls

• CASE STUDY: The Economic Miracle of the Four Tigers
 – Should Policy Promote Investment and Exports?
Economic Growth

• Conclusion: Are There Secrets of Growth?
 – Probably not but
 • A favorable institutional infrastructure
 • Political and social stability
 • “Capital” deepening
 • Minimizing diversion
 • Openness to foreign trade and capital flows
 • Climate
 • Luck
 – We still have a lot to learn