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ABSTRACT

We build cross-sections of asset returns for a given set of characteristics, that is, managed
portfolios that serve as test assets for asset pricing models and building blocks for new risk
factors. We use decision trees to endogenously group similar stocks together by selecting
optimal portfolio splits to span the Stochastic Discount Factor. Our portfolios are inter-
pretable, and reflect many characteristics and their interactions. Compared to combinations
of traditional sorts and machine learning prediction-based portfolios, our cross-sections have
up to three times higher out-of-sample Sharpe ratios and pricing errors, and do not suffer
from excessive repackaging/duplication of the original stocks.
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Introduction

What explains expected returns? This simple question has two unknowns: The returns

of test assets – typically cross-sections of portfolios – and the model that succeeds in pricing

them. While most of the literature has historically focused on the second problem, choosing

the right test assets is equally crucial, and perhaps, even more so. First, unless the test assets

span the underlying Stochastic Discount Factor (SDF), conditional on a given information

set, there is no reason to expect that a well-fitting model is anywhere close to the truth, as

it could easily fail at pricing omitted assets. Second, informative test assets are not only

crucial for evaluating existing models but also serve as basis assets for building new models.

Since tradable risk factors are also usually constructed from the same building blocks as a

typical cross-section, they inherit all the problems of the latter.

Building a cross-section of asset returns conditional on asset-specific characteristics is

equivalent to forming managed portfolios, which can be used for unconditional modeling.

The current standard are single- or double-sorted portfolios, for example the 25 size-and

value sorted-portfolios of Fama and French (1993). We show that the conventional sorting-

based portfolios drastically fails to span the SDF and hence lead to the wrong conclusions

when used to evaluate or construct asset pricing models. These conventional cross-sections

do not reflect the joint effect of multiple characteristics neglecting their interactions. Stacking

multiple single/double sorts against each other often makes the problem worse: Still missing

important interaction effects, these large-dimensional composite cross-sections are full of

duplicated portfolios and noisy repackaging of the same underlying economic risks. Our

solution, Asset Pricing Trees (AP-Trees) addresses all the crucial problems of conventional

sorts: complex interactions, the curse of dimensionality, repackaging and duplication, thus

providing a new way of building better cross-sections of portfolios, to be used in structural

and reduced-form models.

AP-Trees deliver a small cross-section of interpretable, well-diversified portfolios that

provide a robust span of the SDF, conditional on many characteristics. AP-Trees provide a

novel approach to grouping individual stocks into managed portfolios that reflects informa-

tion in a given set of characteristics. Our method is rooted in the idea of decision trees and

builds up on the appeal of popular standard double and triple sorts. It has two key elements:

(1) the construction of conditional tree portfolios and (2) the pruning of the overall portfolio

set based on the SDF spanning requirement. Importantly, the second step yields a set of

long-only portfolios with an endogenous decision of what characteristics to use in splits, and

how granular they should be so that their overall combination spans the SDF.

AP-Trees are intuitive and simple, while capturing complex dependencies. Figure 1a
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Figure 1: Size and Value: Portfolio splits with AP-Trees and double sorts
Panel (a) shows an example of an AP-Tree of depth 3 based on size and book-to market. The first 50/50 split is done by size,
the second by value, and the last one by size again. The portfolio label corresponds to the path along the tree that identifies
it, with “1” standing for going left, while “2” stands for going right.
Panels (b) and (c) illustrate the grouping of individual stocks in the space of size and book-to-market quantiles that define
portfolios in AP-Trees (left, both final and intermediate nodes) and the double-sorted cross-section (right). AP-Trees are con-
structed up to depth 4, which is allowing at most four consecutive splits; i.e., all the portfolios have at least 1/16 of all the stocks.
The number of double-sorted portfolios (16) is chosen to match the depth of the trees based on the granularity/diversification
of the splits.

shows a simple decision tree based on a sequence of conditional consecutive splits. First,

we divide the universe of stocks into two groups based on the stocks’ market cap, then

within each group – by their value, then by size again, and so on. The nodes of such a tree

correspond to managed portfolios and reflect the conditional impact of characteristics in a

simple and transparent way: Using different variables and changing the order and depth of

the splits produces a very diverse and rich set of portfolios compared to the conventional
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unconditional sorting as illustrated in Figure 1. As a result, all the decision trees’ final and

intermediate nodes represent a high-dimensional set of possible investment strategies (Figure

1b), while easily ensuring that each portfolio is well-diversified. Importantly, each portfolio

(tree node) can always be traced back to economic fundamentals.

We consider the whole set of potential managed portfolios offered by AP-Trees and de-

velop a new approach to reduce them to a small number of interpretable test assets, the

process we refer to as pruning. Assets are combined together in higher-level nodes, making

the original portfolios redundant, only if their combination spans the SDF as well as the

original, granular trading strategies. For example, in Figure 1a we split the portfolio with

50% of the smallest stocks (node 11), only if including the small-value and small-growth

portfolios (in addition to the other assets) in the SDF results in a higher total Sharpe ratio

than including the combined small cap portfolio. Targeting the global Sharpe ratio, spanned

by a subset of final and intermediate nodes, is completely different from standard pruning

criteria in either the classic decision-making tree-based literature, or related applications in

machine learning. The key difference lies in the fact that split decisions cannot be done with

only local information (i.e., by simply comparing average returns or volatilities of parent

and children nodes) but also how they co-move with all the other potential basis assets. By

including all the intermediate and final nodes and exploiting the recursive structure of tree

portfolios, we map the pruning into a robust SDF recovery within a mean-variance frame-

work. As a result, we group individual stocks into the same managed portfolios, if they have

the same conditional contribution to the SDF. Finally, to eliminate the danger of overfitting

and to produce an empirically reliable solution, we rely on the dual shrinkage in the variance

and mean. By doing so, we generalize the robust SDF recovery of Kozak, Nagel, and Santosh

(2020), and focus only on the out-of-sample performance of our test assets.

In a large-scale empirical application, we build cross-sections based on the 10 most used

firm-specific characteristics and compare their performance (Sharpe ratios, alphas, cross-

sectional fit) to conventional sorts. All our results are achieved out-of-sample. First, we start

with the simpler problem of building cross-sections based on only 3 characteristics, yielding a

set of 36 different cross-sections which we compare with conventional triple-sorted portfolios.

We find that for every single cross-section, relative to triple sorts, test assets based on AP-

Trees have dramatically higher Sharpe ratios, sometimes up to a factor of three. This means

that standard cross-sections and long-short factors, created from them, do not span the

SDF, conditional on characteristics, and present a wrong benchmark for models as both test

assets and factors. Importantly, this does not come from higher loadings on conventionally

perceived sources of risk: The difference in these returns is not spanned by leading asset

pricing models and remains significant – both statistically and economically – even when
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the cross-section is pitted against an 11-factor model. Our portfolios are well-diversified and

do not load on extreme quantiles or microcaps. In fact, tree-based construction enforces a

stable and balanced composition by default, making them fully comparable and often more

diversified than triple sorts of the same depth. The AP-Tree basis assets contain strictly more

information than conventional sorts, as the implied SDF of AP-Trees explains the expected

returns of conventional sorts, but not the other way around. We conclude that even for

a small number of characteristics, conventional sorts neglect asset pricing information and

AP-Trees are strictly superior.

Second, we create small-dimensional cross-sections of portfolios (i.e., 20–40 assets) that

reflect the information contained in all 10 characteristics and their interactions. Compared

to an optimal use of decile-sorted portfolios (100 assets) we double both the Sharpe ratio

achieved out-of-sample and the alphas associated with the SDF spanned by these portfolios

relative to traditional models. This implies that even using 100 decile-sorted portfolios,

based on 10 separate characteristics, presents too low of a bar to judge model success or

failure. Relative to the best combinations of size-adjusted double-sorted portfolios,1 AP-

Trees offer a 30% increase in both Sharpe ratios and the SDF alpha out-of-sample. This

again confirms that standard sorts present a relatively inefficient and crude way of spanning

the SDF. Factors based on them are likely to be heavily misspecified as well.2

Our empirical findings have important implications for asset pricing. First, we demon-

strate the importance of taking into account the joint distribution of multiple characteristics.

We show that the main driving forces behind the superior performance of AP-Trees is their

ability to efficiently capture interactions among characteristics. Shutting down the interac-

tion channel reduces the asset pricing performance in terms of SDF spanning and pricing

errors by around a half. Second, characteristic-based cross-sections should be constructed

with the right objective function, which is the SDF spanning criterion. Using the same flexi-

bility and information, but either only return spreads or only the variation as the criterion to

select test assets, drops the asset pricing performance to around 20–50%. Third, we confirm

that robust estimation is important. While the effect of interactions and the asset pricing

objective dominates the construction of informative test assets, the inclusion of mean or vari-

ance shrinkage in addition to sparsity shrinkage improves almost all out-of-sample results by

at least 5%.

1That is the combination of 25 size-value portfolios, 25 size-momentum portfolios, etc., all stacked together
in a single large cross-section.

2Intuitively, a model that matches the average size and value premium on the corresponding long-short
portfolios could still fail at pricing many other well-diversified simple strategies based on size and value as
characteristics. Furthermore, consistent with Daniel and Titman (2012), we find that standard unconditional
sorts have a relatively low power in discriminating models and develop alternative test assets based on AP-
Trees.
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Our paper also makes several methodological contributions. Our approach to modeling

the mapping between characteristics and stock returns and to use it to group individual

stocks into managed portfolios is conceptually different from existing ones and is optimally

tailored to the problem. While there are other ways to either explicitly include interactions

(e.g., ad-hoc products of characteristic terms) or to reduce the dimensionality of a set of

given portfolios sorts, for example, Principal Component Analysis (PCA), we combine both

steps with a clear asset pricing objective – spanning the SDF. Our tree-based portfolios are

special in that they present a mix of recursive portfolios with parents and children nodes,

which are optimally weighted to favor more diversified larger parent nodes. Our pruning

selects a sparse set of these tree portfolios, which implies a classification of individual stocks

by combining similar assets in larger portfolios. Hence, we ensure economic continuity of the

resulting portfolios, allowing us to trace back each portfolio to its economic fundamentals.

This unique feature has three advantages. First, it allows us to efficiently capture the impact

of interaction and nonlinear effects in a parsimonious way. Second, we retain economic

interpretability for the basis assets, which is crucial for understanding the areas of model

failure, or the type of modeling needed to improve existing frameworks. Last, but not least,

it is straightforward to incorporate many economic constraints on the desired cross-section of

portfolios, such as the number of test assets, the degree of interactions among characteristics,

restrictions on the minimum number of shares in portfolios, their market cap or liquidity.

Our paper also contributes to the evaluation of asset pricing models. The issues of

robust out-of-sample evaluation, repackaging of redundant information and spanning tests

lie at the core of the construction of AP-Trees and carry over to evaluation metrics for asset

pricing. Martin and Nagel (2019) recently highlighted a stark difference between the in-

sample predictability reflected by traditional statistical tests and its feasible, out-of-sample

counterpart. In the spirit of their work, we fully focus on the out-of-sample SDF Sharpe

ratios and alphas. We propose evaluating asset pricing models based on how well they can

explain the out-of-sample robust SDF constructed from a cross-section of test assets. This

metric accounts for potential redundancy in portfolios and allows for a large number of test

assets. In comparison, conventional performance measures, such as average absolute pricing

errors, are inflated in the presence of highly correlated and repackaged test assets, which

is a particularly severe problem for conventional sorts that are stacked against each other.

We show empirically that traditional sorts and evaluation metrics can fail to discriminate

between different asset pricing models and tend to inflate the performance of models due

to duplication in the test assets. AP-Trees and model evaluation based on robust SDF

spanning, successfully address these concerns.

More generally, although the focus of our paper is on finding interpretable basis assets
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for the SDF, we also contribute to a broader discussion on the role of machine learning in

economics and finance. So far, most papers have separated the construction of profitable in-

vestment strategies with machine learning or other techniques into two steps. First, advanced

methods are used to extract signals for predicting future returns. Second, these signals are

used to form profitable portfolios, which are typically long-short investments based on total

predicted returns, or their mean-variance efficient combinations. However, we strongly be-

lieve that these two steps should be merged together; that is, machine learning techniques

should extract the signals that are the most relevant for the overall economic problem, not

just return prediction. Following this insight, we compare the out-of-sample performance of

pruned AP-Trees to that of long-short prediction portfolios, formed by leading tools from

the machine learning literature, namely random forest and neural networks from Gu, Kelly,

and Xiu (2020b). We find that while retaining easy interpretability of the portfolios, AP-

Trees are superior in their empirical performance, based on both the Sharpe ratio and SDF

alpha. Intuitively, this happens because our approach uses information contained in both

expected returns and variance to form building blocks of the SDF, and, as such, it solves a

problem fundamentally different from just an optimal prediction of returns.3 In other words,

we show that a carefully designed problem formulation can combine the best of both worlds:

the flexibility and robustness of machine learning methods and the relevance of economic

restrictions.

Closely Related Literature

Our paper contributes to the growing literature on asset pricing that tackles the “multi-

dimensional challenge,” as formulated by Cochrane (2011) in his AFA Presidential Address.

On a fundamental level this literature extracts basis assets with statistical and economic

models that span the SDF. Most of the papers can be assigned to one of the following three

streams. The first direction takes a set of characteristic-sorted or characteristic-projected

portfolios as given and applies a dimension reduction to either obtain the SDF or a small

number of factors, with different versions of latent factor models, such as PCA, being among

the most popular approaches.4 While these approaches deal with the large dimensionality

3Conversely, a researcher interested in pure prediction of returns as a function of characteristics, should
rely on techniques that specifically target prediction only.

4Lettau and Pelger (2020) extend the standard principal component analysis to include a cross-sectional
pricing restriction that helps to identify weak factors, and our paper is based on a similar intuition, relying
on a no-arbitrage criterion to select the optimal tree portfolios. Kelly, Pruitt, and Su (2019) and Fan, Liao,
and Wang (2016) explicitly model stock loadings on latent factors as a function of its characteristics, and as a
result apply PCA to managed portfolios that represent linear (and nonlinear) projections of asset returns on
characteristics. Kozak, Nagel, and Santosh (2020) estimate the SDF by solving a regularized mean-variance
optimization for given portfolios.
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with some form of regularization, they can only model the information in the pre-specified

given portfolio sorts. Our work is complementary, as we construct novel characteristic-based

portfolios, which can be used as input to any of those unconditional models, including PCA

and its modifications, generally without further dimension reduction.

The second strand of literature models the impact of characteristics on returns directly,

without imposing an underlying risk model or a no-arbitrage condition. Freyberger, Neuhierl,

and Weber (2020) and Gu, Kelly, and Xiu (2020b), among others, use non-parametric regu-

larized techniques (adapted group lasso on kernels and machine learning tools, correspond-

ingly) to estimate conditional mean returns as a function of characteristics. Moritz and

Zimmerman (2016), Gu, Kelly, and Xiu (2020b), and Rossi (2018) use decision trees for

estimating conditional moments of stock returns in the context of a prediction problem. Our

paper is complementary to this literature, as we are not focused on pure return prediction,

but instead try to find the optimal “building blocks” to span the projection of the SDF,

conditional on these characteristics. Since we use decision trees not for a direct prediction of

returns but for constructing a set of basis assets that span the efficient frontier, none of the

standard pruning algorithms available in the literature is applicable in our setting because

of its global optimization nature.5

Our paper also relates to an emerging literature that estimates a conditional SDF with-

out pre-specifying the mapping between stocks and characteristics. Chen, Pelger, and Zhu

(2019) estimate a conditional SDF by solving the conditional general method of moment

problem implied by no-arbitrage with neural networks. Gu, Kelly, and Xiu (2020a) estimate

a conditional latent factor model with a deep learning autoencoder. Our goal is complemen-

tary: We not only estimate a feasible SDF, conditional on a range of characteristics, but also

recover a set of interpretable building blocks that can be used as test assets in models with

nontradable SDF. From this perspective, AP-Trees combine the elements of both prediction

and classification problems.

Our paper stands out by combining the non-parametric mapping between stocks and

characteristics with the economic objective of a robust SDF recovery. For the second element,

we generalize the robust SDF recovery of Kozak, Nagel, and Santosh (2020) by applying an

additional degree of optimal shrinkage to the mean. This feature is crucial, as sample means

are characterized by massive estimation errors and their large absolute values are often

likely to be due to noise, rather than reflecting a fundamental property of the data. We

formally show that this problem is equivalent to finding an optimal portfolio allocation of an

ambiguity-averse investor who is facing a joint uncertainty in expected returns, volatilities,

5Section II highlights this difference further and introduces an alternative criterion we develop for pruning.

7



and Sharpe ratios of investment opportunities.6 As a result, the special case of Kozak, Nagel,

and Santosh (2020) can be improved upon.

Naturally, our paper expands the literature on constructing optimal test assets. We

introduce the fundamental insight that informative test assets should span the conditional

SDF. Lewellen, Nagel, and Shanken (2010) argue that conventional double-sorted portfolios,

exposed to a small number of characteristics often present a low hurdle for asset pricing

models due to their strong embedded factor structure, and they recommend mixing them

with other cross-sections. We confirm their findings, and offer an alternative set of test assets

that is small in dimension, allows for flexible interactions and nonlinearities, and does not

suffer from duplication after repackaging the original stocks. Furthermore, we explicitly show

that tree-based portfolios are able to isolate more diverse/idiosyncratic areas of mispricing

relative to even a large combination of traditional sorts.

Nagel and Singleton (2011) consider managed portfolios as optimal instruments for hy-

pothesis testing in a conditional asset pricing model. Our test assets are not designed to

improve the power in making inference for a particular parameter and/or factor but rather

try to answer the question of whether the set of portfolios spans the conditional SDF overall

(and as a result, whether it could be used to discriminate models). They are “all purpose”

generic test assets constructed for a given set of characteristics (similar to those available

in Kenneth French’s data library) that could then be applied to assess the performance of

both linear and nonlinear models regardless of their structure and/or a particular hypothesis

tested by the researcher, or they could be used to construct new reduced-form risk factors.

I. Test Assets, Sorting, and Trees

1. Test Assets and SDF

Conditional on a set of characteristics Ct−1, a valid SDF Mt is constructed by its projec-

tion on the space of individual stock returns Rt as follows:

Mt = 1−
N∑
i=1

bt−1,iRt,i with bt−1,i = f (Ct−1,i),

where Ct−1 is an N × K matrix of K characteristics observed for N stocks and f(·) is

a general, potentially nonlinear and non-separable function. Reduced-form asset pricing

6In a related paper, Garlappi, Uppal, and Wang (2007) find that estimation uncertainty has a first order
impact on the empirical performance of the portfolio strategy and show a unique map between different
types of shrinkage and the corresponding priors on the return distribution (for a Bayesian investor), and
parameter uncertainty sets (for a robust version of the mean-variance approach).
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models approximate this dependence by a (potentially infinite) set of basis functions fj(·),
such that f (Ct−1,i) ≈

∑J
j=1 fj (Ct−1,i)wj. This allows us to express the problem as an

unconditional model based on simple managed portfolios:

Mt = 1−
J∑
j=1

wjR
managed
t,j with Rmanaged

t,j =
N∑
i=1

fj (Ct−1,i)Rt,i, (1)

where Rmanaged
t are the returns of managed portfolios whose portfolio weights correspond to

the different basis functions fj(·) in the characteristic space.7

Since the pricing kernel is spanned by these managed portfolios, pricing them would be

equivalent to spanning the SDF itself. The SDF spanning requirement of eq. (1) implies that

we should find a set of managed portfolios such that their combination has the highest Sharpe

ratio, which is equivalent to minimizing the distance between the true SDF and a candidate

one. For example, if Rmanaged
t,j were represented by 25 size-and-value-sorted portfolios (or

their rotations), a model that successfully prices them would be a good candidate SDF.

However, if a cross-section of these managed portfolios does not span the SDF, a model that

explains it well could still be far from the actual pricing kernel. In fact, it is even possible

that a model failing to price some of 25 size-and-value portfolios is actually closer to the

true SDF than the one that succeeds in explaining them perfectly.

Importantly, the maximum Sharpe ratio property for these basis assets needs to be fea-

sible for the investor, that is, achievable out-of-sample, as in-sample Sharpe ratios are prone

to being overfitted. Furthermore, as the functional dependency of the SDF on the char-

acteristics can be complex, we need basis assets that can reflect potential nonlinearities

and interaction effects. Therefore, trees, allowing for flexible conditional and unconditional

modeling of characteristic impact, emerge as a natural candidate.

Note that there could in principle be multiple rotations of the managed portfolios Rmanaged
t,j

from eq. (1), all spanning the same SDF (see, e.g., Kozak, Nagel, and Santosh (2020)). In-

tuitively, however, optimal basis functions should form managed portfolios that ensure eco-

nomic continuity in the underlying basis assets: They should group together securities, which

are similar in firm-specific characteristics. This is also naturally provided by AP-Trees and

allows us to represent a complex SDF with a small number of portfolios, each of which we can

trace back to its fundamentals. This small set of interpretable portfolios allows researchers

to understand the sources of potential model failure. Finally, our managed portfolios easily

allow for economic restrictions (e.g., conditions on the liquidity, diversification, and other

7Kelly, Pruitt, and Su (2019) consider linear basis functions resulting in Rmanaged
t being standard long-

short factors, and conventional risk factors (as in Fama and French (1992)) rely on quantile-based indicators,
while Kozak, Nagel, and Santosh (2020) employ polynomial functions.
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features of the underlying portfolios). As a result, tree-based conditional sorts emerge as a

natural choice, generalizing concepts well familiar to a wide research community, trivial to

interpret, and powerful in the empirical applications.

In summary, optimal portfolios spanning the SDF, projected on a certain group of char-

acteristics, should possess the following properties:

(a) They should be able to reflect the impact of multiple characteristics at the same time.

(b) They should span the SDF, that is, achieve the highest possible Sharpe ratio out-of-

sample when combined together.

(c) They should allow for flexible nonlinear dependence and interactions.

(d) They should be a relatively small number of well-diversified managed portfolios feasible

for investors.

(e) They should provide an interpretable link to fundamentals.

Since our approach is a generalization of the conventional sorting-based procedure, we

start our analysis by discussing the properties of the latter.

2. Conditional and Unconditional Sorting

Single- and double-sorted portfolios form popular convenient, interpretable, and diver-

sified characteristic-based cross-sections.8 Unfortunately, this approach does not allow us

to capture more than two or three firm-specific characteristics at the same time, quickly

leading to a curse of dimensionality. For example, 25 Fama-French portfolios are based on

the intersection of two unconditional sorts, with five groups each (by size and value), with

the intersection yielding 25 groups. With three characteristics, the same approach would

attempt to make already 125 portfolios, often poorly diversified or even empty. In practice,

this type of method never goes beyond triple sorting since the number of stocks in each

group decreases exponentially with the number of sorting variables. The only feasible alter-

native so far has been to stack a set of double-sorted cross-sections against each other, which

rapidly increases the overall number of test assets without any fundamental basis behind it,

and often leads to unnecessary duplication/repackaging of the same underlying securities.

Both small- and large-dimensional sorts are constructed in a fully ad-hoc manner, and there

is no guarantee that the underlying test assets span the SDF regardless of the size of the

cross-section.

Conditional sorts (trees) can model interactions among many characteristics without

suffering from the curse of dimensionality. They are a natural extension of the standard

8Another popular choice of directly interpretable test assets, a set of long-short anomaly portfolios, formed
on a wide range of characteristics, is a special case of the standard sorts.
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sorting-based technique and work particularly well when the underlying characteristics have

a complex joint distribution, characterized by substantial cross-sectional dependence. Similar

to usual sorts, they group together securities that have similar economic fundamentals and

are directly interpretable.

Figure 1a gives an example of a conditional tree of depth 3, where stocks are first sorted by

size, then value, and then size again (i.e., all the potential portfolios – final and intermediate

nodes – rely on up to three consecutive splits). At time t, all the stocks that have valid

size and value information from t − 1 (or previous periods) are first sorted into groups 11

and 12 based on their size at t − 1. Then group 11 is further split into 111 and 112, and

group 12 is split into 121 and 122. The key point here is that the marginal splitting value

for groups 11 and 12 might not be equal to the unconditional median, since they are based

on the conditional information of the previous size split. Finally, the four groups 111, 112,

121, and 122 are further split into two portfolios each, to form eight level-three portfolios.

The notation of each node, therefore, reflects a unique chosen path along the tree with a

specified list and order of the split criteria.9 The conditional splits have two effects: First,

they capture the conditional dependency between characteristics and second, they ensure

diversification by controlling the number of stocks in each portfolio.

If stock-specific characteristics are independent, the order of the variables used for splits

does not matter, and we end up with the same portfolios as double-sorts. However, it is well-

known empirically that characteristics have a complicated joint relationship that question

the validity of coarse double-sorting as an appropriate tool to reflect expected returns. For

example, Figure C.1 in the Appendix, Panel A, shows the sample cross-sectional distribution

of standardized characteristics and their conditional and unconditional impact on expected

returns for the pairs of size/value and size/accruals.10 On average, there seems to be a

negative correlation (in part, mechanical) between size and book-to-market, with a clear

clustering around the north-west and south-east corners. As a result, double-sorted portfolios

are heavily unbalanced across the characteristic spectrum. Furthermore, the conditional

impact of characteristics on expected returns is also known to be highly nonlinear and full of

interaction effects.11 For example, it is well-known that the value effect is not homogenous

across the different size deciles of the securities, and it is particularly strong for the smallest

stocks. At the same time, the impact of accruals is almost flat for large stocks. However,

9Denoting size for 1 and value for 2, the bottom-left node of the tree becomes 121.111, where “121”
stands for the order of the variables used in splits (size, value, size) and “111” maps into the corresponding
portfolio choice (bottom 50% of stocks in each of the decision points).

10The Online Appendix includes additional examples in Section IA.I.
11See, e.g., Freyberger, Neuhierl, and Weber (2020) for the use of adaptive group lasso to estimate the

nonlinear impact of characteristics on expected returns, and Gu, Kelly, and Xiu (2020b) and Chen, Pelger,
and Zhu (2019) for the machine learning approach.
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medium and small securities reveal a striking inverted U-shape pattern (see Figure C.1 in

the Appendix).

Since characteristics are generally dependent and have a nontrivial joint impact on ex-

pected returns, the order of the variables used to build a tree and generate conditional sorts

matters. Each sequence used for splitting the cross-section generates another set of 2d port-

folios, where d is the depth of the trees. If we denote the number of sorting variables by M ,

this implies there are Md different combinations of splitting choices, and we end up with

Md ·2d (overlapping) portfolios, each consisting of N
2d

stocks. Naturally, these portfolios (both

final and intermediate leaves of the tree) can capture at most d-way interactions between

sorting variables.

In sum, if the underlying distribution of characteristics is cross-sectionally dependent,

and/or characteristic effects on managed portfolio properties are conditional and nonlinear,

AP-Trees deliver a multitude of basis assets that are fundamentally different from those

created by double sorting, that, as a result, could lead to a better SDF spanning.

3. Recursive Portfolios and Split Choice

The recursive overlapping structure of portfolios in an AP-Tree is a unique feature that

makes them a particularly appealing choice for test assets. AP-Trees create managed port-

folios in both final and intermediate nodes that could be used as interpretable set of test

assets spanning the SDF. The children nodes in a tree provide more granular splits based

on the underlying information. Choosing only the portfolio of a parent node but removing

the children nodes, provides a natural way of merging two portfolios if they are similar to

each other. Keeping the children nodes is equivalent to a split in the tree, which is beneficial

if it provides additional asset pricing information. Hence, the selection of a sparse set of

portfolios from the intermediate and final nodes of an AP-Tree corresponds to the selection

of splits in the tree, a process we call pruning. Importantly, such a decision should be based

on the overall objective function in mind: An optimal set of portfolios used for return pre-

diction could be very different from the one that targets spanning the SDF. Our selection

procedure for a sparse set of portfolios is discussed in detail in Section II and based on an

asset pricing objective.

The selection of a sparse set of AP-Tree portfolios provides an economically meaningful

grouping of stocks. This feature of the AP-Trees can be particularly useful in the case of

many characteristics that have a large asset pricing impact only in the tails of the cross-

sectional distribution (e.g., deciles 1 and 10). The selection of both final and intermediate

nodes of AP-Trees provides a simultaneous choice of what characteristics to use for splits
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Panel A: A cross-section of single sorts
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Panel B: A cross-section of AP-Tree portfolios after optimal pruning
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Portfolio 5 (the whole market)

Figure 2: Selection of basis portfolios through pruning
The figure presents an example of the depth of pruning for a set of eight portfolios, sorted by a single characteristic. Standard
double-sorting (Panel A) corresponds to the quantiles that form eight equispaced portfolios and eight test assets correspondingly.
Panel B presents one of the potential outcome from applying pruning, resulting in five portfolios with portfolio sizes that range
from 1/8 to 100% of all the stocks.

and how granular to go. Figure 2 presents a simple case of univariate sorting, which is

equivalent to the final nodes of a tree of depth tree. In addition, the AP-Tree also includes

the intermediate nodes. Pruning the tree selects a subset of all the nodes, which essentially

merges lower level nodes, as long as there is not enough informational gain from doing such a

split. In the particular example of Figure 2, the algorithm ended up including only one node

based on the single octile of the stock distribution, while the rest of the portfolios were much

denser, including two, four, or eight times more stocks than the original selection. Figure

3 illustrates the pruning process with multiple characteristics. In this example, we select

one intermediate node, which includes 50% of all stocks with value below the median, and

a final node which corresponds to the smallest 50% of stocks whose book-to-market ratio is

in between the 50%–75% quantile.

The AP-Pruning is necessary for its use as test assets. AP-Trees form a large set of diverse

characteristic-based portfolios, which capture very complex dependencies. However, using

all the potential portfolios is often not feasible: Their number grows exponentially with the

depth of the tree. Using three characteristics with the depth of 3 results in 33 ·23 = 216 final

and intermediate nodes. With 10 characteristics, the total number of portfolios explodes

to over 8,000. Our optimal selection among both final and intermediate nodes of the trees,

allows us to create a cross-section manageable in size with endogenous choice of the types of

13



Split by Value

Value Value

Size Size Size Size

1

11

111

1111 1112

112

1121 1122

12

121

1211 1212

122

1221 1222

Split by Value

Value

Size

1

11 12

121

1211

Figure 3: Illustration of pruning with multiple characteristics
The figure shows sample trees, original and pruned for portfolios of depth 3, and constructed based on size and book-to-market
as the only characteristics. The fully pruned set of portfolios is based on eight trees, where the right figure illustrates a potential
outcome for one tree.

the splits and their depth. Notably, an optimal set of portfolios could also be overlapping, if

this is the best sparse combination of the final and intermediate nodes that spans the SDF.

The AP-Pruning is statistically desirable. The problem of split selection fundamentally

reflects the bias-variance trade-off. Tree portfolios at higher nodes are more diversified,

naturally leading to a smaller variance of their mean estimation, and so forth, while more

splits allow us to capture a more complex structure in the returns at the cost of using

investment strategies with higher variance. Our selection method will choose the parent

nodes, unless the children nodes add asset pricing information that outweighs the increase

in variance.12

Importantly, the selection of a sparse set of tree portfolios implies a classification of

individual stocks. Because of its recursive overlapping structure, the selection of a small

number of AP-Trees is conceptually different from sparsity on some generic portfolios. The

AP-Pruning estimates the mapping between individual stocks and their characteristics by

combining similar assets in larger portfolios. While trees allow us to model the problem as

a portfolio selection problem, our sparsity operates directly on assigning individual stocks

into groups. This is not the case for generic basis portfolios, which do not have a recursive

structure.

12The selection of depth in an AP-Tree can be interpreted as the choice of bandwidth in a non-parametric
estimation. Our AP-Tree chooses the optimal bandwidth based on an asset pricing criterion. If lower-level
splits are removed in favor of a higher-level node, it implies that the split creates redundant assets. It can be
interpreted as choosing a larger bandwidth, which reduces the variance. Removing higher-level nodes and
splitting the portfolios into finer level, corresponds to a smaller bandwidth, which reduces the bias.
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II. Pruning AP-Trees and Portfolio Selection

Our AP-Pruning is a novel approach to selecting a small set of AP-Tree nodes with the

most non-redundant pricing information for spanning the SDF. Despite the existence of many

conventional ways to prune a tree, those are not applicable to our case. The key issue lies in

the fact that finding an optimal set of portfolios that span the SDF and maximize Sharpe

ratio is a global problem and cannot be handled by local decision criteria. Similar to a mean-

variance optimization problem, optimal tangency portfolio weights (some of which could be

zero, in line with selection) can only be found by considering the complete covariance matrix

of assets and not just expected returns and correlations between two individual securities.

As a result, conventional approaches to pruning, for example, by comparing average returns

of portfolios obtained in a split, would work only if this particular decision does not affect

others – a requirement obviously violated if the goal is to optimize the overall risk-return

trade-off. Furthermore, none of the existing criteria to tree pruning actually guarantees that

the resulting set of portfolios spans the SDF or delivers a feasibly high Sharpe ratio: They

simply have a different objective function.

Our selection procedure is based on a global robust asset pricing objective. Since the

issue of SDF spanning is generally equivalent to finding the tangency portfolio with the

highest Sharpe ratio in the mean-variance space, our procedure builds up directly on this

intuition. Importantly, we consider both final and intermediate nodes of all the trees si-

multaneously, which leads to portfolio selection, and a robust feasible SDF representation,

reflecting sparsity in both depth and types of the splits. In more detail, we solve the mean-

variance optimization problem applied to all the final and intermediate nodes of AP-Trees.

Naturally, due to a high-dimensional nature of the problem, we rely on shrinkage to deliver

robust and reliable portfolio selection. Here we provide a summary of the procedure, while

the formal mathematical statements, detailed derivations, and description of the implemen-

tation could be found in the Online Appendix.

Consider the whole cross-section of excess returns on the portfolios built with AP-Trees

and denote their sample estimates of mean and variance-covariance matrix by µ̂ and Σ̂.

Without imposing any shrinkage on the portfolio weights for the SDF, the problem has an

explicit solution, ω̂naive = Σ̂−1µ̂; it is likely to suffer from a substantial degree of overfitting.

Instead, for each target expected return µ0, we find the minimum variance portfolio weights

ω̂robust with an elastic net penalty. Note that all the tuning parameters (the target mean µ0,

the lasso weight of λ1, and the ridge with λ2) are treated as fixed at this step and chosen

separately on the validation data set. In other words, the estimation proceeds as follows:

DEFINITION 1: Divide original sample of data into three non-intersecting subsamples for
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use in training, validation, and testing of the model. A procedure for pruning AP-Trees for

out-of-sample performance is defined by the following steps:

1. For a given set of values of tuning parameters µ0, λ1 and λ2, use training data to solve

min
1

2
w>Σ̂w + λ1||w||1 +

1

2
λ2||w||22, (2)

subject to w>1 = 1

w>µ̂ ≥ µ0,

where 1 denotes a vector of ones, ‖ω‖2
2 =

∑N
i=1 ω

2
i and ‖ω‖1 =

∑N
i=1 |wi|, and N is the

number of assets.

2. Use validation data to estimate the Sharpe ratio of the optimal portfolio from eq. (2) as

a function of tuning parameters (µ0, λ1, λ2). Select parameters that maximize Sharpe

ratios, store resulting portfolio selection and their weights in the SDF.

3. A previously unused testing subsample of data is used to trace the fully out-of-sample

performance of the SDF, properties of the individual portfolios in the chosen cross-

section, etc.

The search of the tangency portfolio is effectively decomposed into two separate steps.

First, we construct a robust mean-variance efficient frontier using standard optimization

with shrinkage terms. Second, we select the optimal portfolio located on the robust frontier,

that is, we find the tangency portfolio on the validation data set that has not been used in

the first step, which is guiding the choice for the optimal level of shrinkage. The resulting

approach combines the following three crucial features:

1. It shrinks the contribution of the assets that do not help span the SDF. Although the

selection is done in the space of original nodes of the trees, implicitly this is similar to

penalizing the impact of lower-order principal components that portfolios load on.

2. It shrinks the sample average portfolio returns toward their cross-sectional average

value, since the highest/lowest sample returns in a large cross-section are likely to be

over/underestimated.

3. It includes a lasso-type shrinkage to obtain a sparse representation of the SDF, selecting

a small number of AP-Tree basis assets.

Proposition 1 further demonstrates that using target mean return µ0 to trace out the

efficient frontier in Step 2 is equivalent to shrinking average sample returns of the portfolios

toward their cross-sectional mean, adding another layer of robustness to the standard port-

folio optimization with elastic net. To demonstrate the solution in closed-form, we consider

optimization in the absence of a lasso penalty.
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PROPOSITION 1 (Target Return and Shrinkage to the Mean): Tracing out the efficient

frontier (without an elastic net penalty, λ1 = λ2 = 0) out-of-sample is equivalent to using

in-sample mean-variance optimization with a vector of sample mean returns shrunk toward

their cross-sectional average. The solution to this problem,

ω̂robust = Σ̂−1 (µ̂+ λ01) ,

has a one-to-one mapping between the target mean µ0 and mean shrinkage λ0. Therefore, the

robust portfolio is equivalent to a weighted average of the naive tangency and the minimum-

variance portfolio.

Tracing out the robust efficient frontier out-of-sample with a additional ridge penalty, is

equivalent to conventional in-sample mean-variance optimization with a) a vector of sample

means shrink toward its cross-sectional average and b) a sample covariance matrix shrunk

toward a diagonal one. Resulting portfolio weights are given by the following expression:

ω̂robust =
(

Σ̂ + λ2IN

)−1

(µ̂+ λ01) .

Our approach generalizes the SDF recovery of Kozak, Nagel, and Santosh (2020) by

including a mean shrinkage to the standard elastic net formulation. Empirically, shrinkage to

the mean is rarely found to be zero and often has a significant effect on the chosen portfolio

spanning the SDF (see the related discussion in Section IV). Intuitively, since estimated

expected returns have severe measurement errors, it is likely that extremely high or low

rates of return (relative to their peers) are actually overestimated/underestimated simply

due to chance and, hence, if left unchanged, would bias the SDF recovery.13

PROPOSITION 2 (Robust SDF Recovery): The robust mean-variance optimization in Def-

inition 1 generalizes the robust SDF recovery of Kozak, Nagel, and Santosh (2020), and is

identical to it in case of zero mean shrinkage (λ0 = 0) or a diagonal covariance matrix of

returns. In the latter case, the robust SDF weights are given by

ω̂robust =
(

Σ̂ + λ2IN

)−1

(µ̂− λ11)+ ,

where (x)+ = max(x, 0) and sign(x) is the sign of x. In the general case of a non-diagonal

13The same reasoning famously underlines the use of adjusted stock betas by Bloomberg that shrink their
sample estimates toward 1, the average in the overall cross-section.
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sample covariance matrix, the solution on the active (non-zero values) set of ωi, is given by[(
Σ̂ + λ2IN

)
ω̂robust

]
i

= µ̂i + λ0 − λ1sign(ω̂robust,i) for i in the active set.

Our pruning procedure can also be interpreted as a robust approach to the mean-variance

optimization problem that explicitly takes into account estimation uncertainty about the

sample means and variance-covariance matrix of returns. Individually, lasso, ridge, and

shrinkage to the mean have been successfully motivated with both robust control and a

Bayesian approach to portfolio optimization with a specific choice of uncertainty sets (priors),

leading to substantial empirical gains in a number of applications (see, e.g., Garlappi, Uppal,

and Wang (2007) and Fabozzi, Huang, and Zhou (2010) for a review).

PROPOSITION 3 (Robust-Control Interpretation of Pruning): The robust mean-variance

optimization in Definition 1 is equivalent to finding the mean-variance efficient solution un-

der a worst case outcome for estimation uncertainty. Given uncertainty sets for the achiev-

able Sharpe ratio SSR, estimated mean Sµ and estimated variance SΣ, the robust estimation

solves

min
w

max
µ,Σ∈SSR∩Sµ∩SΣ

w>Σw s.t. w>1 = 1, w>µ̂ = µ0.

Mean shrinkage provides robustness against the overall Sharpe ratio uncertainty, variance

shrinkage governs robustness against variance, while reflecting uncertainty on the mean es-

timation.

In summary, splitting the original optimization problem into two steps has three different

statistical interpretations. First, there is the actual shrinkage in the estimated mean relative

to the naive solution of the tangency problem. Second, it can be interpreted as a robust

estimation under parameter uncertainty. Finally, since our approach generalizes the logic

of Kozak, Nagel, and Santosh (2020), we also benefit from their Bayesian interpretation of

building the SDF. Empirically, the optimum amount of shrinkage (toward the mean, as well

as lasso and ridge) are chosen on the validation dataset, keeping all the parameter estimates

(portfolio weights, as a function of shrinkage) constant. Importantly, our approach to pruning

is directly driven by the problem at hand: finding a small interpretable set of test assets

that efficiently span the SDF out-of-sample.

AP-Pruning achieves an optimal bias-variance trade-off by properly weighting the tree

portfolios. Tree portfolios at higher nodes are more diversified, resulting in a smaller variance,

while lower nodes capture a more complex structure in the returns at the cost of higher

variance. To mitigate this trade-off, we use the weighting scheme inspired by the properties

18



of the GLS estimator. The idiosyncratic noise in each of the tree portfolios is diversified at

the rate 1
Ni

where Ni is the number of stocks in tree portfolio i. Hence, the optimal rate to

weight each portfolio is
√
Ni. Therefore, we weight each portfolio by 1√

2di
, where di is the

depth of portfolio i in the tree, which is the most natural invariant statistic to account for

differences in diversification for a time-varying number of stocks in each month. The sparse

selection on tree portfolios is based on a similar insight as PCA but offers alternative basis

assets that are interpretable while sharing the key features of PCA. The first node in our

AP-Tree is always a value-weighted market portfolio. The first split results in portfolios with

50% of the stocks whose returns are multiplied by 1√
2

to account for the higher variance.

Note that this re-weighting relies on the arguments similar to those of the PCA weighting

in Kozak, Nagel, and Santosh (2020), where all the assets are multiplied by the eigenvectors

of the covariance matrix, and, hence, portfolio selection is done in the PCA space. The first

PC is usually an equally weighted market factor and is scaled by
√
N , as the market affects

by construction most of the N assets in the sample. A PC loading on only half of the stocks

is then naturally scaled by
√

N
2

, similar to our tree portfolios of depth 1. In other words, the

presence of higher-order nodes have the same effect as higher-order PCs: They offer a chance

to achieve a high rate of return, however, at a cost of larger estimation error and noise. In

contrast to the PCs, however, tree-based asset returns are long-only portfolios, which are

easy to trace back to the fundamentals and interpret. Section IA.II in the Online Appendix

provides several illustrative simulations.

III. Empirical Design

1. Data

We use standard data from CRSP/Compustat to construct portfolios based on firm-

specific characteristics from January 1964 to December 2016, and one-month Treasury bill

rate as a proxy for the risk-free rate, yielding 53 years of monthly observations.

To build sorting variables for decision trees and standard portfolio sorts, we have con-

structed 10 firm-specific characteristics from the Kenneth French Data Library, based on

accounting and market data. Market-based measures are updated monthly, while all the

accounting variables are updated at the end of June, following the convention. A full de-

scription of the data can be found in Appendix A.

Tree-based portfolios rely only on the characteristic data used in the construction of a

particular tree, which is usually a small subset of the overall list of predictors. Therefore,

AP-Trees (like standard sorts) do not require a balanced panel of stocks having observations
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Training sample (20 years)

Validation sample (10 years)
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Figure 4: Timeline of the empirical strategy
The SDF weights and portfolio components are estimated on the training data (first 20 years). The shrinkage parameters are
chosen on the validation data (10 years). All performance metrics are calculated out-of-sample on the testing sample (23 years).

for all the characteristics – a very demanding, yet typical prerequisite for many machine-

learning methods. Empirically, this would require either a substantial sample reduction, or

ad-hoc characteristic imputation, resulting in further selection bias.14 In comparison, our

approach requires minimum data filters.

2. Estimation and Hyperparameter Tuning

To establish baseline empirical results closest to the current literature, we start with a

triplet of stock-specific characteristics: size and two other variables, which implies a set of

36 cross-sections based on three variables each. We consider a cross-section of AP-Trees

with depth four and its closest analogue in the literature: 32 and 64 triple sorts.15 All the

portfolios are value-weighted, and we exclude level-four nodes based on a single characteristic

to avoid what could be considered an unfair advantage of AP-Trees going into extreme

tails.16 We select 40 AP-Tree portfolios in the baseline empirical application, which makes

the dimension of pruned trees comparable to Fama-French triple-sorted 32 and 64 portfolios,

and later investigate this choice further. Our main results are based on measuring out-of-

sample forward-looking performance of portfolios. We divide all the data into three samples

as described in Figure 4:

Training sample. We use the first 20 years of data to estimate portfolio characteristics

and fix their selection for a range of tuning parameters values. We form AP-Trees of depth

four and estimate average returns and covariances for both final and intermediate nodes that

are then used to construct an efficient portfolio frontier with elastic net regularization. For

different levels of shrinkage (lasso, ridge, and target expected return), we select optimal test

assets and form the corresponding SDF spanned by them. The same procedure is applied

14For example, whenever a characteristic is missing, it is usually set to the cross-sectional average of the
variable, regardless of related market/accounting characteristics.

1532 triple-sorted portfolios consider a single split on size, while 64 portfolios reflect all three characteristics
in a similar way and hence could provide a somewhat more justified benchmark for AP-Trees.

16Since many anomaly returns tend to be concentrated in the tails of the cross-sectional distribution,
including such portfolios would only improve the performance of AP-Trees. The results are available upon
request.
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to triple sorts and other benchmark test assets, allowing us to focus on the effect of using

different basis assets.

Validating sample. 10 years of returns are used for selecting tuning parameters: We

track the performance of the portfolio frontier (formed in the training sample) based on the

validation data, and select optimal shrinkage to maximize its Sharpe ratio. Lasso penalty is

used to set the number of non-zero weights to the target number of portfolios, K, delivering

portfolio selection. We then fix the set of chosen portfolios and their weights in the SDF.

Testing sample. The last 23 years of data are used to compare the performance of different

basis assets, achieved fully out-of-sample.

3. Baseline Evaluation Metrics

We run standard asset pricing tests of different cross-sections built on the same charac-

teristics against the most popular reduced form models:

• FF3: Fama-French three-factor model with market, size, and value factors;

• FF5: Fama-French five-factor model, adding investment and profitability factors;

• XSF: A cross-section-specific model with market and three long-short portfolios, cor-

responding to the three characteristics used in the cross-section.

• FF11: An 11-factor model, consisting of the market factor and all 10 long-short port-

folios, based on the full set of 10 characteristics.

For each combination of characteristics (36 cross-sections) we report the following:

1. SR: Out-of-sample Sharpe ratio of the SDF constructed with AP-Trees, TS(32), and

TS(64), using cross-section-specific optimal shrinkage in each case.

2. α: SDF pricing error α (and its t-statistic), obtained from a linear regression against

different factor models.

3. αi: Pricing errors for individual basis assets, relative to a set of candidate factors.

4. XS-R2: Relative magnitude of pricing errors in a given cross-section, that is,

XS-R2 = 1− N

N −K

∑N
i=1 α

2
i∑N

i=1E[Rex
i ]2

.

Note that we use the uncentered version of R2 to ensure that it captures pricing errors

that are not only relative to the other assets but also specific to the overall cross-section

of securities, reflecting both common and asset-specific levels of mispricing.
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IV. AP-Trees vs. Triple Sorts

1. 36 Cross-Sections of Expected Returns

We start by evaluating out-of-sample SDFs spanned by cross-sections of different ba-

sis assets, based on three characteristics. Figure 5a presents monthly Sharpe ratios (SR),

achievable with AP-Trees, triple sorts, and XSF and a set of cross-section-specific long-

short portfolios (accompanied by the market factor). Cross-sections are sorted based on SR

achievable with 40 AP-Tree portfolios. The full estimation results are reported in Table B.1

in the Appendix.

AP-Trees deliver considerably higher out-of-sample Sharpe ratios compared to triple sorts

or conventional long-short factors, and the difference is often striking. Compared to simple

long-short factors, our basis assets deliver SR up to three times higher, implying that AP-

Trees reflect considerably more underlying pricing information. These results are particularly

strong for cross-sections including investment, idiosyncratic volatility, or profitability.17

Cross-section-specific factors have around half of the Sharpe ratios spanned by triple sorts,

that is, the standard long-short factors already miss important cross-sectional information.

This is expected, since even by construction the long-short factors cannot efficiently account

for the interactions between the characteristics, while triple-sorting could reflect their impact

at least to a partial extent. However, having one or two splits in the size dimension (i.e. 32

or 64 triple-sorted portfolios) does not seem to have a substantial impact either.

Could it be that the difference in SR is simply driven by a higher loading on conventional

risk factors? This does not seem to be the case: Figure 5b confirms that the pricing error

of the robust SDF, constructed from AP-Trees, is the highest among different basis assets.

In fact, the pattern in these pricing errors aligns exactly with the total SR achieved for

different characteristics. While the Fama-French five-factor model successfully spans some

of the cross-sections built with triple sorts, it fails to capture the information reflected in the

AP-Tree portfolios. Consider, for example, the case of size, value, and profitability (cross-

section 2). The SDF, spanned by triple sorts, does not have a significant alpha, when pitted

against Fama-French five factors, while the one built from AP-Trees has a t-statistics of 8.

Conventional factor models, as measured by XS-R2, also fail to explain the spread of

average returns within AP-Tree cross-sections (see Figure 5c). Typically, cross-sections that

obtain an R2 of more than 80% would be considered as being well-explained by the set of

17The only cross-sections where triple-sorting achieves performance similar to that of AP-Trees are those
that include short-term reversal. This is due to a high time variation in this pricing signal and its relationship
with other characteristics, in which case it would be advisable to rely on time-varying portfolio weights, e.g.,
estimated via a rolling-window approach. We investigate this further in Section IV.6.
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(a): Sharpe ratio of the robust SDF spanned by AP-Trees and conventional sorts.

(b) Alpha of the robust SDF spanned by AP-Trees and conventional sorts w.r.t. FF5

(c) Cross-sectional R2 with AP-Trees and triple sorts as basis assets w.r.t. FF5

Figure 5: Cross-sections based on three characteristics
Panel (a) displays monthly out-of-sample Sharpe ratios of the robust MVE portfolios spanned by pruned AP-Trees (40 portfo-
lios), triple sorts (32/64 portfolios), and cross-section-specific factors (XSF). SDFs based on triple sorts are constructed using
mean and variance shrinkage. Panel (b) displays the t-statistics of the out-of-sample SDFs alpha relative the Fama-French
five-factor model. Panel (c) depicts XS-R2 within each of the cross-section of basis assets, relative to the the Fama-French
five-factor model. All the cross-sections are sorted by the SR achieved with AP-Trees.
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factors, and this is indeed largely the case for triple sorts and Fama-French five-factor model.

In contrast, one hardly gets the average level fit of over 50% on AP-Trees, with some of the

cross-sections having XS-R2 below 25%.

Our findings are robust to the choice of the benchmark model: They are almost identical

to those obtained with cross-section-specific factors, as well as an 11-factor model (see Figure

C.2 in the Appendix). This suggests that AP-Tree portfolios are overall harder to price, and

our results on the Sharpe ratio and SDF alpha were not driven by a small number of really

challenging standalone portfolios. Instead, it seems to be a general feature of the data,

once again suggesting that unconditional sorting does not provide a reliable benchmark for

a cross-section of portfolios based on characteristics. In the spirit of Barillas and Shanken

(2016), we investigate this further by performing a simple spanning test.

Lettau and Pelger (2020) recently proposed a generalization of the conventional Principal

Component Analysis, RP-PCA, which extracts latent factors designed to price a particular

cross-section of asset returns. Leading RP-PCA factors, therefore, provide a reliable small-

dimensional representation of a large set of portfolios, and thus are ideal for spanning tests.

We extract five leading latent RP-PCA factors from 40 AP-Tree and 32/64 triple-sorted

portfolios in each of the 36 cross-sections. Note that traditional long-short portfolios used

in cross-section-specific factors can also be viewed as a special case of these latent factors

(extracted from the corresponding single sorts). Our out-of-sample analysis extends to span-

ning tests as well; that is, we test whether latent factors from different cross-sections price

their optimal combination feasible to investors.

Figure C.3 in the Appendix summarizes our findings. First, we confirm that RP-PCA

provides a reliable summary of the original cross-sections: SR, achievable out-of-sample by

combining leading RP-PCs, is close to the one delivered with our robust SDF recovery in the

whole cross-section (see Figure C.3a). In line with the previous findings, out-of-sample SR

achievable with RP-PCs from triple sorts is higher than the one based on only cross-section-

specific long-short factors, yet substantially inferior to the RP-PCs based on AP-Trees.

Importantly, Figure C.3b confirms that five latent factors based on AP-Trees can price

most of the portfolios spanned by AP-Trees, with a few cross-sections with significant pricing

errors, indicating the need for more latent factors to capture the complex pricing patterns.

RP-PCs based on triple sorts, however, face a significant challenge in all the cross-sections,

that is, RP-PCs based on triple-sorted portfolios do not span latent factors driving AP-Trees.

Conversely, Figure C.3c shows that the latent factors based on AP-Trees span the feasible

combinations of those extracted from triple sorts as well as the latent factors, based on

triple sorts. In other words, AP-Trees span triple sorts out-of-sample, but not the other way

around. Our results are robust to the number of RP-PCA factors, and additional robustness
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Figure 6: AP-Trees (10 portfolios) vs. triple sorts
The figure displays monthly out-of-sample Sharpe ratios of the robust MVE portfolios spanned by AP-Trees, pruned to 10
portfolios, relative to those spanned by 32/64 triple sorts and cross-section-specific factors (XSF). All the cross-sections are
sorted by the SR achieved with AP-Trees pruned to 10 portfolios.

checks could be found in the Internet Appendix in Section IA.III.

2. How Many Portfolios?

In the previous section we chose to prune AP-Trees to 40 portfolios in order to make re-

sults comparable across different cross-sections, without the additional contamination caused

by the degrees of freedom. However, in practice, increasing the number of portfolios may

not always be beneficial. One one hand, a larger number of portfolios could generally yield

better spanning of the SDF. On the other hand, mechanical addition of the test assets could

also lead to unnecessary repackaging of the same data without providing any new informa-

tion. Indeed, a simple and rather parsimonious structure of the portfolios could often be

enough to adequately capture the SDF projected on them. How many portfolios are enough

to span the SDF? In this subsection, we investigate the role of sparsity in the cross-section of

portfolios. We show that the pruning stage of AP-Trees leads to a small number of portfolios

that are more diversified and liquid than conventional sorts, yet provide a much better span

of the SDF. In other words, the question should be not of “how many?” but “which ones?”

We use lasso penalty as a way of building cross-sections of different size, and find that

almost all of our empirical results carry through using only a quarter of the original basis

assets. Figure 6 depicts monthly out-of-sample Sharpe ratios and SDF pricing error spanned

by only 10 selected AP-Tree portfolios, relative to those of 32/64 triple sorts and the cor-

responding long-short factors. For most of the cases, using just a quarter of the original

cross-section is enough to retain roughly 90% of the original Sharpe ratio and its alpha rela-
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tive to the Fama-French five-factor model. The optimal number of portfolios depends on the

complexity of the conditional SDF, projected on these characteristics, and could be chosen

optimally based on the validation sample or using a full cross-validation. The general con-

clusion is clear, however: The sheer number of portfolios used to build a cross-section is often

a poor reflection of the underlying information captured by those portfolios. Conventional

measures of fit often used in empirical work, like R2, are not robust to recombining assets

into larger, denser portfolios, and, as a result, are prone to a substantial bias.

The key driver behind the ability of AP-Trees to condense a large amount of information

in a small number of assets lies in the pruning methodology outlined in Section I.3. Since our

method is designed to select portfolios not only by the type and value of the characteristics

used for splitting but also the depth of the split, it effectively merges smaller assets together

whenever it is optimal for the overall mean-variance-efficient (MVE) optimization. As as a

result, our approach creates endogenously optimal portfolios that contain a larger number

of securities (both in count and market cap) designed to span the SDF. Indeed, we find

that intermediate nodes of the trees (as well as the market itself) constitute a substantial

fraction of the chosen basis assets and substantially contribute to the overall projection of the

pricing kernel. We revisit this issue further in Section IV.5, where we focus on a particular

cross-section and examine the SDF structure identified with AP-Trees.

3. Nonlinearities and Characteristic Interactions

We now set to identify the sources of the AP-Trees performance. One of the advantages

of using AP-Trees lies in their natural ability to impose various constraints on the set of

potential basis assets, which can be achieved by simply removing particular nodes of the

trees before applying the pruning procedure. Nonlinearity of characteristic impact has been

the focus of many recent papers in asset pricing (see, e.g., Freyberger, Neuhierl, and Weber

(2020)). However, this nonlinearity can come from two major sources: a nonlinear impact

of a particular characteristic on asset returns/volatility and complicated general interaction

effects among characteristics. To test these competing channels, we remove all the interaction

nodes with different characteristics of the trees. Resulting AP-Trees essentially reflect the

universe of single-sorted basis assets. While the robust mean-variance approach of Section II

still allows us to track the nonlinear impact of stand-alone characteristics, it shuts down the

channel for interactions. Importantly, our approach does not require exact parametrization

of these effects; that is, combining conditional sorts with pruning allows us to capture general

forms of nonlinearities without having to model them explicitly.

Figure 7 reveals that even faced with only three characteristics at a time, out-of-sample

26



Figure 7: AP-Trees: the impact of interaction nodes
The figure displays monthly out-of-sample Sharpe ratios of the MVE portfolios spanned by AP-Trees with and without inter-
action nodes. All the cross-sections are sorted by the SR achieved with AP-Trees pruned to 10 portfolios.

Sharpe ratios without interactions are on average half as large as those of our general AP-

Trees that include interaction nodes. This further highlights the importance of modeling de-

pendencies of the conditioning information in the SDF (and resulting cross-sections). Based

on Figure 5a, Sharpe ratios of the MVE portfolios, that are based on simple cross-section-

specific long-short factors XSF, are lower than those of AP-Trees even when the latter do

not include interaction nodes. This suggests that the SDF places asymmetric weights on the

extreme quantiles of single-sorted portfolios, which form the long and short legs of conven-

tional factors. In other words, nonlinearities matter even in the absence of characteristics

interactions.

In summary, we find that both types of nonlinearities are important in the cross-section

of asset returns. Characteristic interactions, however, seem to play a crucial role in the

recovery of test asset spanning the SDF.

4. Importance of Economic Objective Function

The second driving force behind the AP-Tree performance is its economic objective func-

tion. A flexible non-parametric mapping between characteristics and portfolios alone is not

sufficient to capture pricing information and represent profitable investment opportunities.

There are two conceptual differences separating AP-Trees from the standard off-the-shelf

data-reduction techniques and cross-section building. First, our approach implicitly takes

into account the conditional impact of firm characteristics on both expected returns and

variances of portfolios. As explained in Section I.1, recognizing this is a crucial step in

creating an optimal cross-section. In contrast, most of the traditional approaches leading
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to portfolio formation focus on either purely return prediction (e.g., cross-sectional regres-

sions of returns on characteristics, random forest, or conventional deep-learning prediction

approaches) or pure sources of co-movement in asset returns (e.g., principal components).

Second, economic theory suggests that finding an optimal set of portfolios combines the el-

ements of both prediction and classification, making traditional ML techniques focused on

pure return prediction invalid. We now show that both of these features are crucial drivers

of the AP-Tree performance.

First, we consider a particular case of AP-Tree portfolios, with the mean shrinkage pa-

rameter, λ0, set to infinity, thus using the same average return for all the portfolios in the

portfolio selection step. Since this is equivalent to making a choice based only on portfolio

covariance, we call such test assets V-trees. V-Trees start from the same pool of portfolios

as AP-Trees, but differ in the way they select a low-dimensional cross-section: Similar to

conventional PCA, they focus primarily on the variance reduction and neglect information

in the mean. However, the mean of the selected low-dimensional basis assets is used to form

a robust SDF.

Second, we use decile-sorted portfolios based on the conditional expected returns, pre-

dicted with leading ML techniques. Popular in many recent papers, these portfolios are

usually used to form an overall long-short ML-based trading strategy. Many off-the-shelf

prediction-based approaches are intuitively appealing, as they easily take advantage of the

flexible estimation techniques.18 Note, however, that by construction these portfolios focus

only on the return prediction step, and are not designed to span the SDF. Furthermore,

return-sorted portfolios bundle different pricing signals together, often making it very dif-

ficult to disentangle individual contributions and lacking interpretability. In short, while

prediction-based portfolios constructed from multiple characteristics can have high Sharpe

ratios and alphas relative to benchmark models, there is nothing per se in their construction

that delivers basis assets spanning SDF, projected on the space of characteristics.

We use the best performing deep neural network of Gu, Kelly, and Xiu (2020b) to predict

next period returns based on the current period characteristics and sort the stocks into decile

portfolios based on the prediction.19 The first decile portfolio is a value-weighted average of

the 10% of stocks with the highest predicted returns. We also consider portfolios based on

return prediction via random forest, another popular ML technique exploiting a collection of

characteristic-based decision trees for return prediction.20 Deep neural network and random

18Recent examples include the non-parametric adaptive lasso of Freyberger, Neuhierl, and Weber (2020)
and a battery of machine-learning tools employed by Gu, Kelly, and Xiu (2020b).

19The best performing model is a three-layer neural network, with all the tuning parameters set to the
same values as in Gu, Kelly, and Xiu (2020b). The tuning parameters of the random forest are optimally
selected on the validation data.

20We set the random forest depth to four splits, making them comparable in granularity to triple-sorted
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(a) Sharpe ratios of robust SDFs spanned by AP-Trees and standard ML-based portfolios

(b) Alpha of robust SDFs spanned by AP-Trees and standard ML-based portfolios w.r.t. FF5

Figure 8: AP-Trees vs. cross-sections built with off-the-shelf ML tools
Panel (a) presents monthly out-of-sample Sharpe ratios of the robust MVE portfolio spanned by AP-Trees, V-Trees, and
portfolios based on return forecasts with deep learning (DL-MV) and random forest (RF-MV). RF-LS and DL-LS denote long-
short portfolios based on the corresponding prediction deciles, formed with deep learning and random forest. Penal (b) reports
out-of-sample t-statistics of the SDF alpha relative to the Fama-French five-factor model.

forest are the two best empirically performing methods for return prediction (see Gu, Kelly,

and Xiu (2020b)) and, hence, provide an appropriate benchmark for the off-the-shelf ML

tools. We build robust MVE portfolios from 10 prediction deciles formed with both methods

(labeled DL-MV and RF-MV for deep learning and random forest, correspondingly). In

addition, we also consider a popular value-weighted long-short strategy, labeled DL-LS and

RF-LS, of buying stocks in the highest prediction decile and selling those in the lowest one.

Figure 8 presents out-of-sample Sharpe ratios and pricing errors of the SDFs spanned

by AP-Trees, V-Trees, and ML-based portfolios based on return prediction. First, AP-Trees

clearly stand out in terms of Sharpe ratios, which are always two to three times larger

portfolios and AP-Trees.
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than those of alternative cross-sections. The Fama-French five-factor model is successful in

spanning at least half of the cross-sections based on leading ML methods, yet it is challenged

by the AP-Trees. Second, Figure 8 also clearly indicates that information in the mean is

crucial in selecting basis assets: V-Trees provide the least informative and easiest-to-price

cross-sections, although they start from the same conditional sorting and stability-inducing

ridge penalty in the pruning as AP-Trees. Their performance is poor, since targeting just

the variance in selecting basis assets is an obviously wrong criterion. Finally, leading return-

prediction portfolios, DL-MV, DL-LS, RF-MV, and RF-LS, display a very similar subpar

performance. This clearly shows that while flexible off-the-shelf machine-learning methods

do a great job at predicting returns per se, these are not the right tools for building a cross-

section of asset returns, and they require significant adaptation rooted in economic theory.

In other words, the signal extraction for an asset pricing problem requires an asset pricing

objective.

5. Zooming into the Cross-Sections

We now turn to a particular example of the cross-section to further investigate the struc-

ture of the SDF spanned by AP-Trees: Portfolios based on size, investment, and operating

profitability. This is a fairly representative cross-section, with all the results presented here

naturally extending to other characteristics as well (reported in the Internet Appendix in

Section IA.V).

Table 1 presents the summary statistics for cross-sections, built with AP-Trees and triple

sorts. SDFs spanned by AP-Trees have higher SR and generally larger pricing errors α (or,

equivalently, lower cross-sectional XS-R2) than the conventional portfolios, based on the

unconditional quantiles. Interestingly, performance of the SDF based on only 10 portfolios,

is already very close to the full SDF based on 40 test assets. This is reassuring, since smaller

cross-sections are also intuitively very appealing, and allow for easier interpretations of the

spanning tests, sources of risk premia, or factors based on them. Furthermore, this decision

is directly guided by the data-driven selection from the validation sample. Figure C.8a in

the Appendix shows that a small number of original test assets is indeed enough to span

most of the SDF, without introducing the danger of overfitting.

Figure C.8b in the Appendix presents the heatmap of tuning parameters and their op-

timally chosen values based on the validation data-set. In this particular case, the impact

of the L2 penalty (ridge) on the composition of the cross-section was rather small; how-

ever, the model performance depends on the choice of the shrinkage to the mean, λ0. In

this particular case, the chosen value of λ0 was 0.15, corresponding to an important, but
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Table 1: Cross-sections based on size, operating profitability, and investment

Type of cross-section
AP-Trees (10) AP-Trees (40) TS (32) TS(64)

SDF SR 0.65 0.69 0.51 0.53

α

FF3 0.94 0.90 0.75 0.84
[10.11] [11.03] [7.40] [8.13]

FF5 0.81 0.76 0.47 0.61
[8.76] [9.60] [5.57] [6.73]

XSF 0.81 0.76 0.46 0.61
[8.77] [9.46] [5.39] [6.69]

FF11 0.89 0.80 0.37 0.65
[9.12] [9.60] [4.29] [6.91]

XS-R2 FF3 18.0% 51.0% 82.0% 82.0%
FF5 11.0% 64.0% 91.0% 90.0%
XSF 28.0% 65.0% 91.0% 90.0%
FF11 – 42.0% 92.0% 87.0%

The table presents aggregate properties of the cross-sections based on size, investment, and operating profitability, created from
AP-Trees (pruned to 10 and 40 portfolios, correspondingly) and triple sorts (32 and 64 portfolios). For each cross-section, the
table reports its monthly Sharpe ratio on the test sample, along with the alpha of the SDF spanned by the corresponding
basis portfolios. Alphas are computed relative to the Fama-French three- and five-factor models, cross-section-specific factors
(market, size, investment, and operating profitability), and the composite FF11 model.

not excessive, shrinkage toward the minimum variance portfolio induced by the estimation

error in expected returns.21 Optimal amount and type of shrinkage can be different for

each cross-section: Shrinkage to the mean here, for example, indicates that there is a sub-

stantial estimation uncertainty in the estimated expected returns relative to their actual

spread. Note, however, that even without mean and variance shrinkage, AP-Trees would

still outperform conventional sorting, since most of the empirical performance is derived

from relying on conditional tree-based splits (and their selection based on the explicit asset

pricing objective).

What are these 10 portfolios left after pruning the tree? Table 2, Panel A, provides the

general description of these basis assets and their main characteristics: Relative number of

stocks and its value-weighted counterpart, based on the market cap of the securities that

go into a corresponding portfolio, as well as pricing errors, relative to leading reduced-form

asset pricing models.22 Out of 10 selected portfolios, only five correspond to the final nodes

of the trees, containing just over 6% of all the stocks; other assets include trading strategies

that can be constructed from only one or two characteristic splits, and even the market

21The mean shrinkage is scaled by the cross-sectional average, that is µ̂+ λ0µ̄1.
22The Internet Appendix provides complete description of the AP-Tree portfolios and illustrates their

construction in the characteristic space, as well as their corresponding long-short weights in the SDF spanned
by these portfolios.
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Table 2: Portfolios in the cross-sections

Portfolio ID Portfolio description % of stocks WV size quantile αFF3 αFF5 αXSF αFF11

Panel A: 10 AP-Tree portfolios
1 (1111.1) market 100% 0.95 – – – –

2 (1111.121) medium caps 25% 0.71 -0.03 -0.37 -0.05 -0.03
[-0.34] [-0.36] [-0.40] [-0.26]

3 (3111.11) low profitability 50% 0.94 0.03 -0.11∗∗ -0.11∗∗ -0.11∗∗

[-0.54] [-2.33] [-2.20] [-2.46]
4 (3111.11111) low investment, small caps 6.25% 0.07 1.49∗∗∗ 1.32∗∗∗ 1.32∗∗∗ 1.63∗∗∗

[6.14] [5.33] [5.33] [6.47]
5 (3211.1121) low investment, high profit., small caps 12.5% 0.51 0.23∗∗∗ 0.09 0.07 0.06

[2.95] [1.19] [0.66] [0.83]
6 (1221.1111) small caps, low profitability 12.5% 0.37 -0.37∗∗∗ -0.34∗∗∗ -0.34∗∗∗ -0.29∗∗

[-2.81] [-3.00] [-3.01] [-2.41]
7 (2221.11111) low profitability, small caps 6.25% 0.19 -0.16 -0.22 -0.21 -0.05

[-0.717] [-0.95] [-0.89] [0.21]
8 (3331.12221) high investment, small caps 6.25% 0.45 -0.82∗∗∗ -0.62∗∗∗ -0.62∗∗∗ -0.46∗∗∗

[-5.86] [-4.81] [-4.78] [-3.75]
9 (2122.11111) low profitability, small caps 6.25% 0.27 -0.37∗ -0.43∗∗ -0.42∗∗ -0.20

[-1.95] [-2.21] [-2.13] [-1.00]
10 (3133.12122) high investment, small caps 6.25% 0.48 -0.84∗∗∗ -0.64∗∗∗ -0.64∗∗∗ -0.50∗∗∗

[-5.92] [-4.84] [-4.81] [-3.92]
Panel B: Top 10 most “challenging” assets from 64 triple-sorted portfolios

122 LME(0-0.25) × OP(0.25-0.5) × Inv(0.25-0.5) 1.91 % 0.17 0.97∗∗∗ 0.84∗∗∗ 0.84∗∗∗ 0.95∗∗∗

[6.61] [5.60] [5.54] [6.01]
214 LME(0.25-0.5) × OP(0-0.25) × Inv(0.75-1) 1.55 % 0.40 -0.93∗∗∗ -0.61∗∗∗ -0.61∗∗∗ -0.66∗∗∗

[-5.27] [-3.60] [-3.61] [-3.77]
132 LME(0-0.25) × OP(0.5-0.75) × Inv(0.25-0.5) 1.03 % 0.17 0.39∗ 0.40∗ 0.38∗ 0.77∗∗∗

[1.93] [1.90] [1.74] [3.65]
121 LME(0-0.25) × OP(0.25-0.5) × Inv(0-0.25) 1.9 % 0.17 0.59∗∗∗ 0.45∗∗ 0.44∗∗ 0.66∗∗∗

[3.38] [2.48] [2.45] [3.56]
112 LME(0-0.25) × OP(0-0.25) × Inv(0.25-0.5) 1.66 % 0.17 0.24 0.25 0.24 0.49∗∗∗

[1.45] [1.45] [1.38] [2.79]
123 LME(0-0.25) × OP(0.25-0.5) × Inv(0.5-0.75) 1.47 % 0.17 0.38∗∗ 0.32∗∗ 0.32∗∗ 0.43∗∗∗

[2.56] [2.10] [2.08] [2.71]
222 LME(0.25-0.5) × OP(0.25-0.5) × Inv(0.25-0.5) 1.95 % 0.40 0.46∗∗∗ 0.35∗∗∗ 0.34∗∗∗ 0.28∗∗

[4.69] [3.52] [2.98] [2.69]
244 LME(0.25-0.5) × OP(0.75-1) × Inv(0.75-1) 1.18 % 0.41 -0.57∗∗∗ -0.47∗∗∗ -0.49∗∗ -0.34∗∗

[-3.44] [-3.18] [-2.65] [-2.28]
334 LME(0.5-0.75) × OP(0.5-0.75) × Inv(0.75-1) 1.08 % 0.66 0.35∗∗ 0.34∗∗ 0.32∗ 0.37∗∗

[2.33] [2.18] [1.77] [2.25]
111 LME(0-0.25) × OP(0-0.25) × Inv(0-0.25) 5.04 % 0.16 0.42∗ 0.21 0.22 0.48∗∗

[1.89] [0.95] [0.97] [2.19]

The table presents the properties of the portfolios, spanning the impact of size, investment, and operating profitability on
asset returns. Panel A presents the set of 10 portfolios, created from trees of depth 4 (which exclude the extreme portfolios,
representing 1/16 of the stocks sorted by the same characteristic) and their features: The average percentage of currently
available stocks, included in the portfolio, their value-weighted quantile based on size, and alphas with respect to Fama-French
three- and five-factor models, the model that includes cross-section-specific factors in addition to the market, and the FF11
model (market and 10 long-short portfolios based on all the available characteristics), with the corresponding t-stats in the
brackets. ∗, ∗∗, and ∗∗∗ correspond to 10%, 5%, and 1% significance levels, respectively. Panel B presents the same statistics
for 10 portfolios out of 64, created by triple-sorting, that are the most challenging to price, according to the composite FF11
model. The portfolio ID for AP-Trees denotes the sequence of characteristic (LME/OP/INV) in the first part and the direction
(low/high) of the split in the second part. Figure C.10 in the Appendix illustrates the composition for all 10 AP-Tree portfolios.
The portfolio ID for triple sorts denotes the quantile for (LME/OP/INV).

itself. For example, portfolio 6 is created by taking the bottom 50% of the stocks based on

their size (LME) and within them, the bottom 25% of the firms sorted by investment, as

a result, containing 12.5% of the stocks at all the time periods.23 This portfolio presents

23The portfolio ID of AP-Trees has two parts: the characteristic used for the split (LME/OP/INV) and
the direction of the split (low/high). The first number of the second component denotes the parent node
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a challenge to all the baseline tradable asset pricing models, which is significant not only

statistically but economically as well, yielding a monthly alpha of about -30 b.p. Similarly,

portfolio 8 is constructed by taking small cap stocks among those highest in investment and

has an alpha of 41-86 bp, depending on the underlying model. Notably, the average (value-

weighted) market cap of the stocks forming this portfolio, is close to being 50% of the market,

so this pricing performance cannot be driven by microcaps. Overall, six of the chosen 10

tree-based portfolios have consistently significant stand-alone alphas. These portfolios are

not due to extreme quantiles of the underlying characteristics but are in fact characterized

by a complex interaction structure. The prevalence of pricing errors, and the diversity of

the stocks that go into such portfolios, are robust to the choice of risk factors, as almost

the same pattern persists when basis assets are priced with the Fama-French five-factors, or

even 11 cross-sectional factors (see Table 2, Panel A).

Table 2, Panel B, lists the top 10 portfolios from the cross-section of 64 triple-sorted

assets that are most difficult to price for the most comprehensive FF11 model. While there

are obviously substantial alphas associated with some of these portfolios, the sheer number

of “significant alphas” is somewhat misleading: Most of these portfolios consist of a small

number of stocks (usually about 1.5% of the market) and often reflect assets that are very

similar to each other in terms of characteristics: Small in size and profitability and high in

investment. Since our pruning algorithm selects the basis assets in both types of character-

istics used for splits and their depth, these portfolios could actually be grouped together by

AP-Trees.

The excessive granular nature of the triple-sorted portfolios can also mask the true fit

of the leading asset pricing models. Suppose that there is a group of portfolios that are

perfectly spanned by a given set of risk factors and that do not command a separate risk

premia or provide an alternative exposure to these risk factors. Treating them as a sepa-

rate group of assets does not yield better investment opportunities and does not reveal an

informative pattern in returns. Yet, the sheer number of these perfectly priced portfolios

will substantially increase the quality of cross-sectional fit, leading to higher XS-R2, based

on the simple OLS estimates. This is precisely why the R2 of a GLS estimation is often

empirically lower than its OLS counterpart (see, e.g., Lewellen, Nagel, and Shanken (2010)):

Many portfolios do not provide a source of incremental Sharpe ratio, which is reflected in

(market) and not a split; i.e., the split direction starts with the second number. For example, portfolio 6
with the id of 1221.1111 has its first split with characteristic 1 (size) to the left denoted by 1 (bottom 50%).
Within this portfolio, the next split is with characteristic 2 (investment) to the left (bottom 50%). The third
and final split is with characteristic 2 (investment) to the left (bottom 50%). Portfolio 8 with id 3331.12221
denotes characteristic 3 (operating profitability) to the right three times (top 12.5%) and characteristic 1
(size) to the left (bottom 50%). Figure C.10 in the Appendix illustrates the composition for all 10 AP-Tree
portfolios.
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(a) SDF spanned by AP-Trees (10) (b) SDF spanned by TS (64)

Figure 9: SDF weights in AP-Trees and triple sorts
This figures shows the structure of the conditional SDF spanned by 10 AP-Trees portfolios and 64 triple-sorted basis assets for
size, investment, and operating profitability.

the GRS statistic and other quantities that target investment opportunities, rather than a

linear measure of fit. The stark difference between the number of correctly priced test assets

and its spanning is illustrated in Figure C.9. It shows the pricing errors for each of the

individual basis assets with respect to XS-specific factors, with the candlestick denoting 5%

confidence intervals. The large number of triple-sorted portfolios with insignificant pricing

errors represent largely redundant assets in the “center” of the sorting cube.

The need for portfolio depth is particularly visible if you compare structure of the SDF,

spanned by different basis assets, shown in Figure 9. Stocks generally high in investment,

are grouped together in AP-Trees and present the same exposure to the SDF, compared

to six separate portfolios spanning the same characteristic space in triple sorts (the top

layer of the three-dimensional graph in Figure 9)). While some of the general patterns of

the loadings are shared across cross-sections, it is immediately clear that AP-Trees reflect

a more sophisticated data-generating process that triple sorts aim to capture only with a

very coarse grid. The ability of conditional sorts to map the finer resolution of returns in

the characteristic space without heavily loading on poorly diversified portfolios, allows us

to uncover new long-short patterns in the data, and could present a new challenge for both

reduced-form and structural models.

Our main empirical results are unlikely to be driven by microcaps. First, in construct-

ing AP-Trees, we specifically eliminated extreme groups of stocks that are heavily loading

on a single characteristic, for example, size. We excluded all the splits that use a single

characteristic throughout the tree (e.g., 16 portfolios sorted only by size). Second, not only

tree-based portfolios generally include a larger number of stocks, efficiently diversifying the

idiosyncratic noise, and endogenously grouping similar securities together: They are either
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Table 3: Size, operating profitability, and investment: Cross-sections without small caps

Panel A: Portfolios with size quantile above 0.4 Panel B: Stocks with market cap above 0.01%

AP-Trees (10) AP-Trees (40) TS (32) TS(64) AP-Trees (10) AP-Trees (40) TS (32) TS(64)

SDF SR 0.48 0.45 0.25 0.40 0.30 0.22 0.17 0.17

α

FF3 0.68 0.73 0.47 0.76 0.70 0.89 0.77 0.82
[7.51] [7.64] [2.30] [6.00] [5.04] [4.27] [2.74] [2.78]

FF5 0.45 0.47 -0.11 0.54 0.32 0.37 0.16 0.25
[5.70] [6.11] [-0.72] [4.44] [3.87] [2.57] [0.72] [1.00]

XSF 0.44 0.47 -0.11 0.54 0.31 0.36 0.14 0.22
[4.76] [5.04] [-0.74] [4.21] [3.75] [2.49] [0.65] [0.88]

FF11 0.43 0.43 -0.25 0.34 0.29 0.36 0.18 0.38
[5.37] [5.27] [-1.62] [2.76] [3.71] [2.45] [0.83] [1.55]

XS-R2

FF3 62.0% 73.0% 76.0% 86.0% 42.0% 96.0% 91.0% 90.0%
FF5 70.0% 85.0% 91.0% 93.0% 70.0% 98.0% 95.0% 93.0%
XSF 76.0% 85.0% 92.0% 93.0% 71.0% 98.0% 95.0% 93.0%
FF11 – 86.0% 84.0% 94.0% – 98.0% 95.0% 93.0%

The table presents the aggregate properties of the cross-sections based on size, operating profitability, and investment, created
from AP-Trees (pruned to 10 and 40 portfolios, correspondingly) and triple sorts (32 and 64 portfolios). Panel A is based only
on the basis portfolios that have a value-weighted size quantile greater than 0.4, while Panel B describes cross-sections created
only from stocks with market capitalization greater than 0.01% of the total market capitalization, i.e., currently around top
600 stocks in the U.S. For each cross-section, the table reports its monthly Sharpe ratio on the test sample, along with the
alpha of the SDF spanned by the corresponding basis portfolios. Alphas are computed relative to the Fama-French three- and
five-factor models, cross-section-specific factors (market and long-short portfolios, reflecting size, operating profitability, and
investment), and the composite FF11 model which includes the market portfolio, along with the 10 long-short portfolios, based
on the cross-sectional characteristics.

similar to or more liquid than the most challenging test assets among triple sorts. For the

case of size, profitability, and investment (see Table 2), there is only one portfolio that loads

heavily on the small caps (bottom 50% on investment and bottom 12.5% on the size within),

and the rest have the same market cap as those based on triple sorts or larger. Interestingly,

superior performance of the AP-Tree-based SDF cannot be attributed to turnover, as the

long and short legs of the MVE portfolio have the same turnover of 24-28% as the MVE

portfolio based on cross-section specific factors.24.

Finally, the flexible nature of AP-Trees allows us to directly investigate the role of small

caps in the SDFs spanned by different test assets. Table 3, Panel A, presents results after

removal of all the nodes that have an average size quantile below 40% of the market-wide

distribution, thus implicitly not allowing for splits that lead to portfolios with too many

small-cap stocks. We find that AP-Tree portfolios are still harder to price and remain more

informative about the SDF, even after removing portfolios consisting of small cap stocks.

Following Kozak, Nagel, and Santosh (2020), we also start with the universe of liquid stocks

having a capitalization above 0.01% of the total market, which currently corresponds to the

universe of roughly 600 largest stocks in the United States (Panel B). This removes not only

micro- but also many small- to medium-cap stocks. As expected, Sharpe ratios and pricing

errors become significantly lower than using the whole data-set, but the qualitative difference

24Detailed results are available upon request.
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between AP-Trees and conventional sorting remains. For example, the out-of-sample Sharpe

ratio of the SDF, spanned by 10 AP-Tree portfolios, is almost double that of triple sorts.

Furthermore, all AP-Tree SDFs alphas remain significant even at 1%, while triple sorts are

routinely spanned by conventional factors.

6. Time Variation

All of our results so far assumed a constant projection of the SDF on the set of basis

assets. To study time variation in these weights, we fix portfolio selection based on the

training and validating samples and estimate the optimal robust combination of the basis

assets on a rolling window of 20 years.

Figure 10 summarizes our findings. First, time variation in the SDF weights seems to

be quite important empirically for both triple sorts and AP-Trees. It definitely improves

the out-of-sample performance of the robust SDF, as it allows us to achieve a higher Sharpe

ratio with almost all of the cross-sections. The difference is large not only statistically

but economically as well. Second, using AP-Trees with flexible weights clearly uniformly

dominates triple sorts across the whole set of characteristics, including short-term reversal,

which presented an earlier challenge (cross-sections 30, 4, and 11).

Second, we measure the sensitivity of empirical results with respect to a particular type

of shrinkage used. Our main results are reported in Figure C.6 in the Appendix, compar-

ing mean and variance shrinkage effect on the Sharpe ratio, achievable with time-varying

SDF weights. Both AP-Trees and triple sorts benefit from shrinkage to the mean, which

substantially stabilizes empirical performance. These effects, however, are not homogeneous

across different cross-sections: For many sets of basis assets, the effect is fairly small (with a

magnitude of 1–5%), but for other cross-sections, characterized by a large time variation in

risk premia, mean shrinkage leads to large improvements in performance (up to 50%). Inter-

estingly, there is clear synergy in combining mean and variance shrinkage, as it leads to the

largest overall performance gains.25 The Internet Appendix reports the same results using a

fixed degree of mean and variance shrinkage, that is, if we don’t choose the penalty parame-

ters optimally for each cross-section on the validation data set, but instead pre-specify them

to a fixed value. Using a combination of the mean and variance shrinkage leads to better

results than no shrinkage or only variance shrinkage, even if tuning parameters are chosen

non-optimally. Hence, our SDF construction is very robust, as its performance is driven by

some degree of combined shrinkage rather than choosing a particular optimal level.

25Note that to isolate partial effects of shrinkage, we keep the optimal mean and/or variance shrinkage
tuning parameters selected on the validation data.

36



Figure 10: Sharpe ratios of the SDF estimated on a rolling window
The figure displays the monthly out-of-sample Sharpe ratio of the robust mean-variance efficient portfolios with time-varying
weights estimated on a rolling window of 20 years and constant weights. The basis portfolios are the pruned AP-Trees (40 and
10 portfolios) and triple sorts. The AP-Tree portfolios are selected on the training data and kept the same. The variance and
mean shrinkage is selected optimally on the validation data. All the cross-sections are sorted by the SR achieved with AP-Trees
(40).

In short, empirical performance of the AP-Trees seems to be mainly driven by the con-

struction of the new basis assets, rather than a particular choice of tuning parameters that

leads to their contribution to the SDF.

Finally, we also repeat the empirical exercise by using a cross-validation approach similar

to Kozak, Nagel, and Santosh (2020), which allows us to also evaluate our model on the

initial subsample of the data. We use three-fold cross-validation by splitting the whole

sample of data into three equal time-series blocks. Each block is used as a training period,

and the model is evaluated on the remaining two. Tuning parameters are then selected to

optimize the overall cross-validation results. Figure C.7 in the Appendix reports resulting

Sharpe ratios and SDF alphas, confirming that the relative performance of AP-Trees and

triple sorts is robust to the choice of evaluation time period. We further show in the Internet

Appendix that these findings extend to all the other main results in our paper and that the

estimated SDF structure remains the same under cross-validation and in the forward-looking

out-of-sample approach of Section III.2.

V. AP-Trees in Large Dimension

Historically, stacking small-dimensional cross-sections together has been the only way to

build a set of test assets reflecting more than two or three characteristics at the same time.

Usually this involves combining long-short portfolios, decile sorts, or double-sorted portfolios
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Figure 11: Sharpe ratios of the SDFs spanned by AP-Trees and traditional sorts.
Out-of-sample Sharpe ratios of SDFs based on 10 characteristics as a function of the number of basis assets constructed with
AP-Trees (based on 36 AP-Trees with 10, respectively, and 40 portfolios in each), 10 quintile sorts, 10 decile sorts, combination
of double sorts based on size and the other characteristic (either 6 or 25 double sorted assets per specific portfolio). Optimal
shrinkage is applied to all the basis assets.

together as, for example, in Feng, Giglio, and Xiu (2020), Giglio and Xiu (2021) or Hou, Mo,

Xue, and Zhang (2021), among many others. With an ever-increasing list of anomalies, the

size of such a cross-section explodes, especially after accounting for potential interactions.

Furthermore, many composite cross-sections repackage the same underlying securities into

differently labeled portfolios without providing evidence on whether they reflect different

economic risks. AP-Trees and their pruning stage provide a way to identify optimal splits in

the characteristic space that directly target SDF spanning and eliminate redundant assets

and/or combine them together.

There is no universal benchmark for building an interpretable model-independent cross-

section of portfolios reflecting more than 2–3 characteristics at a time. Therefore, we consider

several popular approaches to generate the set of basis assets reflecting all 10 characteristics:

a) Sets of 10 quintile portfolios, uniformly sorted by characteristics (50 assets altogether); b)

sets of 10 decile-sorted portfolios (100 assets); c) a combination of six double-sorted portfo-

lios, with each based on size and some other characteristic (54 assets), and d) a combination

of 25 double-sorted portfolios, with each based on size and some other characteristic (225

assets). Tree-based portfolios are constructed based on combining selected assets (10/40

portfolios) from each of the 36 cross-section we described in Section IV.1 (starting from 360

and 1,440 assets, correspondingly).26 Empirically, most papers focus on pricing the cross-

26We have also pruned original AP-Trees based on 10 characteristics. We found that more than four-
way interactions do not provide a significant contribution to the overall SDF or portfolio selection, and
that starting from assets reflecting the information in three characteristics achieves the same result, both
quantitatively and qualitatively. Detailed empirical results are available upon request.
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Figure 12: SR of the SDFs spanned by AP-Trees, V-Trees, and prediction portfolios
Out-of-sample Sharpe ratios of SDFs based on 10 characteristics as a function of the number of basis assets constructed with
AP-Trees (based on 36 AP-Trees with 10, respectively, and 40 portfolios in each), V-Trees constructed of Section IV.4, forecasted
sorted portfolios based on deep learning DL-MV and random forest RF-MV. We apply robust shrinkage with lasso to all basis
assets and choose the optimal validation mean and variance shrinkage. We also include long-short portfolios denoted as DL-LS
and RF-LS based on a highest and lowest prediction quantile.

sections of no more than 50–60 portfolios; hence, the combination of all the available decile

or double sorts, if anything, overrepresents cross-sections used in the literature.

Figure 11 presents the SDF Sharpe ratio for the optimal mean-variance strategies, spanned

by different basis assets. As before, to make results comparable, we rely on shrinkage optimal

in each of the cross-sections, and study their performance out-of sample. Therefore, the only

conceptual source of difference in the empirical performance, is the original set of portfolios

(e.g., standard unconditional sorting vs. AP-Trees).

Several observations are in order. First, quintile-sorted portfolios represent probably the

least informative cross-section one could in good faith build based on the 10 characteristics

we consider. While univariate sorts are generally considered to be the staple of the empirical

literature of anomalies, doubling the depth of the analysis (e.g., moving from five to poten-

tially 10 portfolios based on the same characteristics) easily doubles the out-of-sample Sharpe

ratio and presents a more realistic picture of the informational content of the same char-

acteristics. Using only six double-sorted portfolios for each of the non-size anomalies (i.e.,

a potential cross-section of 54 assets) does not reflect most of the investment opportunities

either.

Using the best (sparse and robust) combination of the 25 × 9 double-sorted portfolios

is probably the best one could do within the standard framework, allowing one to achieve

monthly out-of-sample Sharpe ratios of about 0.4–45, depending on the number of portfolios.

AP-Trees, however, raise that bar even higher: On average, they provide a 0.1 increase in the

monthly Sharpe ratio relative to the 25 × 9 double-sorted portfolios (in relative terms, this
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is roughly a 20% increase over 25× 9 double sorts and a 80%–100% increase over anomaly-

based deciles). Interestingly, most of the empirical performance of the SDF is achieved with

about 20-30 portfolios, indicating large redundancies and repackaging in the cross-section

sorted by 10 characteristics.

The increase in the composite Sharpe ratio, delivered by AP-Trees, does not come from

conventional risk exposure: Figure C.5 in the Appendix presents out-of-sample alphas of the

SDFs spanned by different basis assets. Regardless of the cross-sectional dimension, tree-

based portfolios are considerably harder to price, and they have roughly a 20%–30% gain

over the optimal subset of the double-sorted portfolios, built from the same characteristics

(25× 9). Decile-sorted portfolios are even easier to price.

Our results indicate that contrary to the conventional wisdom, one needs a fairly lean

cross-section of assets to efficiently reflect an SDF projected on the span of a relatively large

number of characteristics. Interactions, captured by conditional splits, account for almost

half of the total SDF Sharpe ratio. This implies that even if the candidate model successfully

explains a wide set of long-short anomalies or even decile sorts, it could still miss half of the

SDF, projected on the space of returns via underlying characteristics.

To further understand the sources of AP-Tree performance, we follow the approach pre-

sented in Section IV.4. Figure 12 presents out-of-sample Sharpe ratio results for alternative

test assets based on V-Trees and prediction-based portfolios from Section IV.4. V-Trees,

basis assets selected from conditional sorts ignoring the mean information, have consistently

two to three times lower Sharpe ratios than the robust SDF spanned by AP-Trees. Most of

the prediction-based portfolios have a relatively unstable and equally subpar performance,

yielding at best half the AP-Trees Sharpe ratio. In summary, our large-dimensional cross-

section highlights the same features of the return space that underlie AP-Trees’ advantage

over simple triple sorts: flexible modeling of conditional and unconditional characteristic

impact, and an objective function that directly targets SDF spanning by selecting portfolios

optimal in depth and coverage.

We now turn to illustrating the effect of using different test assets in traditional horse

races between asset pricing models.

1. Evaluating Asset Pricing Models

Horse races are popular among reduced-form asset pricing models, whether it is to judge

the performance of a new SDF, or to compare existing benchmarks. In this subsection we

illustrate two conceptual points. First, as expected, popular empirical metrics for model

evaluation and comparison depend on the choice of tests assets. Optimal cross-sections,
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however, should span the SDF projected on stocks via characteristics, and allow for an easy

diagnostic of model performance. Traditional sorts, especially deciles and simple long-short

anomalies, do not span the underlying SDF (see Section V) and, therefore, even a model that

successfully captures most of the alpha among hundreds of decile sorts, could be severely

misspecified. As a consequence, uninformative simple sorts can be of limited use for the

absolute or relative comparison of models.

Second, we show that popular measures of model performance used in larger cross-sections

suffer from redundancy cased by asset repackaging. Since most of the empirically used cross-

sections are naturally built by stacking portfolios built from the same universe of stocks,

the sheer number of significant alphas, or OLS cross-sectional XS-R2, do not reveal whether

they identify independent sources of alpha. Instead, we propose to focus directly on the SDF

alpha, since it allows us to aggregate all the information from the test assets and measures its

out-of-sample feasible to investors performance. Finally, we show that even in stand-alone

portfolio pricing, AP-Trees provide a more informative set of test assets, as the sources of

its “alpha” are more independent and less prone to repackaging.

Our main findings are summarized in Table 4. We consider several high-dimensional

cross-sections from Section V and evaluate leading reduced-form asset pricing models based

on the empirically popular set of criteria: average absolute alpha, share of significant alphas

in the cross-section, XS-R2, and the alpha of the feasible out-of-sample SDF spanned by the

test assets. It is important to emphasize that our goal is not to find the “best” model but

to highlight that the empirically popular measures of model performance in a large cross-

section crucially depend on the test assets and metrics. As before, all of our results are

out-of-sample.

First, Table 4 confirms our results from Section V, since cross-sections based on AP-Trees

are significantly harder to price, almost independent of the metric used in the evaluation. The

relative ranking of model performance, of course, is different, and depends on the particular

choice of the test assets. For example, the majority of the models seem to be very successful at

pricing 100 decile-sorted portfolios, which would often be interpreted empirically as empirical

success (with top-performing models having R2 of 91–92%). As the differences in explaining

the decile-sorted portfolios is only minor among most factor models, they are of limited use

to distinguish the relative performance of models. Double sorts are priced well too, albeit

to a lesser extent. The same models, however, achieve a very modest level of fit, when

facing cross-sections based on AP-Trees (-2–20% on a set of 40 portfolios), despite the latter

consisting of, on average, more diversified, larger cap portfolios. This is not surprising, given

the battery of empirical results presented earlier. Importantly, the relative difference between

model performances is also more pronounced, allowing us to identify the weaker models.
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Table 4: Horse races for reduced-form asset pricing models

Statistics Porfolios Carhart FF-3 FF-5 FF-6 Hirshleifer,
Jiang (2010)

Q5 Stambaugh,
Yuan (2017)

Decile 100 0.0014 0.0018 0.0013 0.0011 0.0012 0.0012 0.0013
DS 225 0.0025 0.0023 0.0021 0.0026 0.0023 0.0031 0.0032

Avg Abs Alpha DS 40 0.0034 0.0039 0.0032 0.0031 0.0029 0.0037 0.0040
DS 70 0.0032 0.0034 0.0029 0.0031 0.0028 0.0035 0.0039

AP-Trees 40 0.0071 0.0081 0.0067 0.0063 0.0065 0.0064 0.0067
AP-Trees 70 0.0058 0.0065 0.0053 0.0052 0.0053 0.0054 0.0057
Decile 100 10 (10%) 18 (18%) 10 (10%) 8 (8%) 5 (5%) 6 (6%) 9 (9%)

DS 225 77 (34%) 58 (26%) 39 (17%) 68 (30%) 47 (21%) 75 (33%) 74 (33%)
# Signif. Alphas (%) DS 40 14 (35%) 16 (40%) 8 (20%) 12 (30%) 7 (18%) 11 (28%) 13 (33%)

DS 70 28 (40%) 25 (36%) 16 (23%) 25 (36%) 17 (24%) 25 (36%) 27 (39%)
AP-Trees 40 23 (58%) 29 (73%) 20 (50%) 18 (45%) 18 (45%) 14 (35%) 14 (35%)
AP-Trees 70 37 (53%) 39 (56%) 27 (39%) 28 (40%) 28 (40%) 24 (34%) 24 (34%)
Decile 100 0.88 0.78 0.89 0.92 0.91 0.91 0.89

DS 225 0.82 0.83 0.84 0.77 0.84 0.70 0.67
XS-R2 DS 40 0.65 0.54 0.66 0.56 0.69 0.44 0.37

DS 70 0.72 0.69 0.74 0.65 0.75 0.57 0.52
AP-Trees 40 0.17 0.12 0.23 0.03 0.20 -0.02 -0.12
AP-Trees 70 0.36 0.33 0.40 0.24 0.38 0.18 0.09
Decile 100 6.47 7.03 5.93 5.64 5.60 5.03 4.95

DS 40 8.64 9.05 7.95 7.82 7.52 6.64 6.62
SDF α (t-stat) DS 70 9.04 9.48 8.36 8.19 7.95 6.81 6.96

AP-Trees 40 9.78 10.08 8.95 8.98 8.35 7.86 7.33
AP-Trees 70 10.92 11.32 10.46 10.34 9.57 8.92 8.50

SR out-of-sample 0.20 0.16 0.21 0.23 0.32 0.43 0.30

The table shows a comparison between different linear factor models using a variety of empirical metrics. The models are:
Fama-French-Carhart four-factors, Fama-French three- and five-factors, Fama-French five + momentum, Hirshleifer and Jiang
(2010) four-factors, Q5 of Hou, Mo, Xue, and Zhang (2021), and a four-factor model of Stambaugh and Yuan (2017). The
test assets are based on 10 characteristics and include 100 decile-sorted portfolios, 225 double-sorted portfolios (DS) based,
robust mean-variance selection of the 225 DS portfolios to 40 and 70 basis assets, and AP-Trees with 40 and 70 portfolios.
The performance metrics are the average absolute pricing errors of all the test assets with respect to the factor models, the
number and fraction of pricing errors significant at 95%, the cross-sectional XS-R2, and the t-statistic of the robust SDF alpha.
Finally, we report the out-of-sample Sharpe ratios of the MVE portfolios constructed with the factors. All results are reported
monthly out-of-sample, from January 1994 to December 2016. The best model according to a specific cross-section and metric
is indicated in bold.

Second, conventional metrics, like the absolute pricing error or the number of significant

alphas (often reported in empirical literature), are misleading, as they tend to ignore portfolio

repackaging, and, hence, the risk of focusing on redundant and/or duplicated test assets.

Indeed, 100 deciles and 225 double-sorted portfolios have many close-to-identical portfolios.

Hence, the average pricing errors or proportion of significant alphas can be fairly small if

the dominating duplicated assets are explained well (Lewellen, Nagel, and Shanken (2010)).

It should not come as a surprise, therefore, that Fama-French factors appear to perform

well in this regard. Note that an appropriate metric in this context takes the form of

an out-of-sample GRS-style test, which takes into account dependencies in the test assets.

However, a conventional test is not applicable in our large-dimensional setup. Building

on this intuition, our alphas of a feasible SDF are a spanning test for a large-dimensional

cross-section relative to a reduced-form model. As a result, while all the models appear to

be significantly misspecified, the mispricing factors of Stambaugh and Yuan (2017) explain
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Figure 13: Similarity clusters of alpha-portfolios.
The figures show the t-Distributed Stochastic Neighbor Embedding (t-SNE) plots for the portfolios with significant pricing
errors relative to the Q5-factor model of Hou, Mo, Xue, and Zhang (2021). We use the robust SDF recovery to select 70
double-sorted portfolios (from the set of 225) and 70 AP-Tree portfolios.

these 10 characteristics the best.27

Figure 13 further illustrates the issue of data repackaging. We use a well-known machine-

learning visualization tool for high-dimensional data, t-Distributed Stochastic Neighbor Em-

bedding (t-SNE), to capture similarities of portfolios that have significant alphas.28 Each

portfolio is characterized by a 10-dimensional vector of value-weighted characteristic ranks

of the stocks composing it, with portfolios that have a similar characteristic composition,

displayed closer to each other. The 70 portfolios of both double-sorted and AP-Trees have a

similar number of the assets with significant alphas (24–25 portfolios), relative to Q5 bench-

mark model. Double-sorted portfolios appear to form five clusters, corresponding to five

groups of economically similar portfolios. On the other hand, AP-Trees’ alpha portfolios

seem to require more than twice as many clusters, which indicates that the revealed mis-

priced patterns of the SDF projection are more independent and less subject to the risk

of simple repackaging. This illustrates that AP-Trees benefit substantially more from the

sparse SDF selection because of their special overlapping basis function structure.

27The factor models of Hirshleifer and Jiang (2010), Hou, Mo, Xue, and Zhang (2021), and Stambaugh
and Yuan (2017) are based on information in addition to the 10 characteristics (in contrast to the versions of
Fama-French factors), which explains the variation in Sharpe ratios. Hence, the relative performance could
be different when we condition on other characteristics.

28The Internet Appendix provides further details on the t-SNE visualizations.
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VI. Conclusion

We propose a novel way to build characteristic-based cross-sections of returns that cap-

ture the complex information of a large number of cross-sectional stock return predictors.

AP-Trees deliver a small number of long-only portfolios that (1) reflect information in many

stock-specific characteristics allowing for conditional interactions and nonlinearities, (2) pro-

vide test assets for asset pricing models that are closer to spanning the SDF and are consid-

erably harder to price than conventional cross-sections, and (3) act as the building blocks

for the SDF that performs well out-of-sample in various empirical applications. Our ap-

proach generalizes the idea of characteristic-based sorting to decision trees to better capture

complex interactions among many characteristics and selects a sparse set of portfolios with

the most relevant and non-redundant information. As a result, it reflects the importance of

both the type of characteristics (and their interactions) and the granularity of the underlying

splits. We show that conventional cross-sections (including hundreds of portfolios stacked

against each other) do not fully reflect the information contained in the characteristics of

the underlying stocks and often present a rather crude, if not misguided, description of ex-

pected returns. Our approach is flexible and allows for many additional restrictions and

modifications to the underlying procedure.

We show that popular double and triple sorts, as well as their typical combinations, are

a poor reflection of the underlying stock returns. Yet, the majority of candidate tradable

risk factors are constructed from suboptimal portfolios and have been tested on similar

suboptimal cross-sections. Our findings, therefore, have important implications for both

popular test assets and empirical reduced-form models in asset pricing.
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Appendix A. List of the Firm-Specific Characteristics

Table A.1: Characteristic variables as listed in the Kenneth French Data Library

Acronym Name Definition Reference

AC Accrual Change in operating working capital per split-adjusted share from the fiscal year

end t-2 to t-1 divided by book equity (defined in BEME) per share in t-1. Operating

working capital per split-adjusted share is defined as current assets (ACT) minus

cash and short-term investments (CHE) minus current liabilities (LCT) minus debt in

current liabilities (DLC) minus income taxes payable (TXP).

Sloan (1996)

BEME Book-to-Market ratio Book equity is shareholder equity (SH) plus deferred taxes and investment tax credit

(TXDITC), minus preferred stock (PS). SH is shareholders equity (SEQ). If missing,

SH is the sum of common equity (CEQ) and preferred stock (PS). If missing, SH

is the difference between total assets (AT) and total liabilities (LT). Depending on

availability, we use the redemption (item PSTKRV), liquidating (item PSTKL), or

per value (item PSTK) for PS. The market value of equity (PRC*SHROUT) is as of

December t-1.

Basu (1983), Fama

and French (1992)

IdioVol Idiosyncratic volatil-

ity

Standard deviation of the residuals from a regression of excess returns on the Fama

and French three-factor model

Ang, Hodrick, Xing,

and Zhang (2006)

Investment Investment Change in total assets (AT) from the fiscal year ending in year t-2 to the fiscal year

ending in t-1, divided by t-2 total assets

Fama and French

(2015)

LME Size Total market capitalization at the end of the previous month defined as price times

shares outstanding

Banz (1981), Fama

and French (1992)

LT Rev Long-term reversal Cumulative return from 60 months before the return prediction to 13 months before Bondt and Thaler

(1985)

Lturnover Turnover Previous month’s volume (VOL) over shares outstanding (SHROUT) Datar, Naik, and

Radcliffe (1998)

OP Operating profitabil-

ity

Annual revenues (REVT) minus cost of goods sold (COGS), interest expense (TIE),

and selling, general, and administrative expenses (XSGA) divided by book equity

(defined in BEME)

Fama and French

(2015)

r12 2 Momentum To be included in a portfolio for month t (formed at the end of month t-1), a stock

must have a price for the end of month t-13 and a good return for t-2. In addition,

any missing returns from t-12 to t-3 must be -99.0, CRSP’s code for a missing price.

Each included stock also must have ME for the end of month t-1.

Jegadeesh and

Titman (1993)

ST Rev Short-term reversal Prior month return Jegadeesh (1990)

This table presents the characteristic variables as listed on Kenneth French’s website with acronym, definition, and academic
reference.
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Appendix B. Additional Tables

Table B.1: Summary statistics of the cross-sections, built from AP-Trees

Id Char 1 Char 2 Char 3 SR αFF3 αFF5 αXSF αFF11 λ0 λ2

30 Size SRev Turn 0.24 1.03 0.98 0.7 0.64 0.40 3.16E-06

[7.36] [6.83] [6.65] [5.78]

17 Size Prof SRev 0.27 0.83 0.72 0.76 0.81 0.55 1.00E-08

[6.8] [5.81] [6.31] [6.53]

27 Size SRev LRev 0.30 0.83 0.73 0.76 0.79 0.90 1.00E-08

[10.2] [8.97] [9.55] [9.26]

4 Size Val SRev 0.30 0.98 1.03 0.92 1.04 0.90 1.00E-08

[4.88] [5.0] [6.82] [7.55]

33 Size LRev Turn 0.31 0.62 0.51 0.61 0.66 0.35 1.00E-08

[4.19] [3.37] [4.18] [4.15]

12 Size Mom LRev 0.32 0.84 0.71 0.83 0.88 0.80 1.00E-08

[5.89] [4.94] [5.82] [5.89]

22 Size Inv SRev 0.33 0.95 0.91 0.82 0.89 0.80 1.00E-07

[10.22] [9.5] [9.17] [9.43]

32 Size LRev IVol 0.33 0.79 0.74 0.79 0.83 0.05 1.00E-08

[7.46] [6.72] [7.47] [7.3]

5 Size Val LRev 0.33 1.1 1.05 0.81 0.74 0.70 1.00E-08

[8.61] [7.9] [7.91] [6.97]

28 Size SRev Acc 0.35 1.05 0.96 0.68 0.69 0.65 1.00E-08

[7.75] [6.97] [6.56] [6.22]

15 Size Mom Turn 0.35 1.12 1.17 0.82 0.83 0.15 1.00E-08

[7.38] [7.42] [8.8] [8.53]

31 Size LRev Acc 0.36 1.09 1.03 0.65 0.58 0.10 1.00E-08

[5.97] [5.42] [5.39] [4.64]

35 Size Acc Turn 0.36 1.11 1.09 0.73 0.71 0.75 1.00E-08

[6.84] [6.56] [5.98] [5.4]

13 Size Mom Acc 0.37 1.13 1.08 0.77 0.74 0.50 1.00E-08

[10.59] [9.73] [9.75] [8.92]

11 Size Mom SRev 0.40 1.12 1.08 0.67 0.64 0.85 1.00E-07

[6.95] [6.47] [6.79] [5.96]

29 Size SRev IVol 0.41 0.94 0.81 0.81 0.89 0.35 1.00E-08

[10.11] [8.76] [8.77] [9.12]

1 Size Val Mom 0.41 1.03 1.06 0.83 1.06 0.00 1.00E-08

[4.51] [4.61] [5.71] [7.31]

6 Size Val Acc 0.42 0.93 0.82 0.82 0.93 0.30 3.16E-07

[7.74] [6.93] [7.11] [7.55]

9 Size Mom Prof 0.42 0.99 0.94 0.93 1.04 0.05 1.00E-08

[8.35] [7.76] [7.89] [8.43]

10 Size Mom Inv 0.44 0.97 0.94 0.82 0.9 0.45 1.00E-08

[11.22] [10.75] [9.93] [10.67]

8 Size Val Turn 0.46 1.01 0.97 0.95 1.03 0.15 1.00E-08

[9.12] [8.59] [8.76] [8.95]

2 Size Val Prof 0.46 0.98 1.04 0.91 0.98 0.85 1.00E-08

[5.43] [5.54] []7.55 [8.03]

36 Size IVol Turn 0.46 0.78 0.6 0.65 0.61 0.00 1.00E-08

[6.87] [5.59] [6.13] [5.45]

14 Size Mom IVol 0.47 0.96 0.84 0.85 0.91 0.00 1.00E-08

[10.17] [9.1] [9.28] [9.37]

23 Size Inv LRev 0.48 0.99 0.93 0.84 0.89 0.90 1.00E-08
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[11.33] [10.41] [10.09] [10.22]

18 Size Prof LRev 0.50 0.93 0.8 0.79 0.83 0.20 1.00E-08

[9.53] [9.11] [9.56] [9.39]

19 Size Prof Acc 0.52 0.91 0.99 0.85 0.94 0.35 1.00E-08

[4.63] [4.89] [6.83] [7.09]

34 Size Acc IVol 0.54 1.06 1.12 0.93 1.07 0.05 3.16E-06

[6.11] [6.29] [7.42] [8.23]

7 Size Val IVol 0.54 1.05 1.1 0.92 1.04 0.00 3.16E-07

[6.86] [7.07] [8.86] [10.07]

21 Size Prof Turn 0.55 1.02 1.14 0.89 1.01 0.00 1.00E-08

[4.18] [4.58] [6.22] [6.62]

20 Size Prof IVol 0.59 1.01 0.93 0.95 1.02 0.05 3.16E-07

[6.54] [5.8] [6.11] [6.1]

26 Size Inv Turn 0.62 1.03 0.99 0.79 0.98 0.00 1.00E-08

[6.6] [6.14] [5.38] [6.51]

24 Size Inv Acc 0.62 0.81 0.69 0.75 0.7 0.20 1.00E-08

[4.85] [4.14] [4.84] [4.15]

25 Size Inv IVol 0.64 1.01 0.98 0.86 0.92 0.05 1.00E-08

[9.46] [8.88] [8.37] [8.62]

3 Size Val Inv 0.65 1.04 1.02 0.99 1.26 0.50 1.00E-08

[6.78] [6.37] [6.4] [7.98]

16 Size Prof Inv 0.65 1.06 1.02 0.82 0.85 0.15 1.00E-08

[10.59] [9.94] [9.95] [9.94]

The table summarizes 36 cross-sections, based on AP-Tree portfolios. For each combination of three characteristics we built the
trees of depth four, and excluded the nodes that result from using the same characteristics for splits four times. The set of final
and intermediate nodes is then pruned to 10 portfolios, with the corresponding SDF spanning them, following the approach
outlined in Sections II and I.3. The table presents the values of the optimally selected tuning parameters (λ0 for shrinkage to
the mean and λ2 for ridge, while the lasso term is set to select 10 assets). We also report the out-of-sample properties of the
SDFs spanning these portfolios: their Sharpe ratio and alphas with respect to Fama-French three- and five-factor models, cross-
section-specific factors (and market), and the ultimate FF11 model, which includes the market and 10 long-short portfolios,
based on characteristics. The t-statistics are in brackets.
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Appendix C. Additional Figures

Appendix C.1. Stylized Empirical Facts

(a) Joint distribution of size and book-to-market (b) Joint distribution of size and accruals

(c) Conditional mean return of size and book-to-
market

(d) Conditional mean return of size and accruals

(e) Conditional mean return of size and book-to-
market

(f) Conditional mean return of size and accruals

Figure C.1: Joint distribution of characteristics and conditional expected returns
These figures show the joint distribution of characteristics in the cross-section of stocks, their conditional and unconditional
impact, and the expected returns for the combination of size and book-to-market and size and accrual. Subfigures (a) and (b)
represent the pairwise empirical cross-sectional distribution of the characteristic quantiles across the stocks. The frequency is
computed on a quantile 20×20 grid. Subfigures (c) and (d) represent the impact of a characteristic quintile on expected returns
unconditionally and conditionally on the second characteristic. For example, Subfigure (c) describes the average returns on
stocks sorted by their book-to-market ratio (quintiles 1–5), both unconditionally and conditionally on belonging to quintiles
1–5 based on size. Subfigures (e) and (f) represent the empirical distribution of expected returns in the pairwise characteristic
space. Yellow areas denote high expected return, while dark blue corresponds to the areas with the lowest expected returns.
All the quantities are computed on a grid on 20 × 20 unconditional quantiles by averaging historical returns on the stocks
belonging to that portfolio. The Internet Appendix includes the results for other characteristics.
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Appendix C.2. Additional Empirical Results for All Cross-Sections

(a) SDF α: t-statistics of the pricing error relative to XS-specific factors

(b) SDF α: t-statistics of the pricing error relative to the market and 10 long-short factors

(c) XS-R2: pricing portfolios with XS-specific factors

Figure C.2: Pricing errors and XS-R2 for AP-Trees and triple sorts
Pricing errors of the SDFs spanned by AP-Trees (40 portfolios) and triple sorts and cross-sectional fit measured by XS-R2. The
t-statistics of the pricing errors are relative to the cross-section-specific factors (market + 3 long-short factors) and all 11 factors
(market + 10 long-short factors). All the cross-sections are sorted by the SR achieved with AP-Trees pruned to 40 portfolios.
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(a): Sharpe ratios of the SDFs spanned by 5 RP-PCA of AP-Trees and triple sorts

(b) Spanning AP-Tree SDFs with 5 RP-PCA factors

(c) Spanning triple-sort SDFs with 5 RP-PCA factors

Figure C.3: Cross-sectional spanning tests via RP-PCA
Panel (a) displays monthly out-of-sample Sharpe ratios of the MVE portfolios spanned by 5 RP-PCA factors extracted from
40 AP-Tree portfolios and 32/64 triple-sorts. Following Lettau and Pelger (2020), the risk-premium weight is set to 10. All
the cross-sections are sorted by the SR, achieved with RP-PCA factors based on AP-Trees. Panel (b) depicts t-statistics of the
out-of-sample AP-Tree-RP-PCA-SDF alphas with respect to 5 RP-PCA factors obtained from different cross-sections. Panel
(c) shows spanning tests of the SDF based on RP-PCA from triple sorts.
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Figure C.4: SDF α: t-statistics of the pricing errors of SDF pruned AP-Trees (10 portfo-
lios) with respect to 5 Fama-French factors
The figure displays the out-of-sample t-statistics of the pricing errors of the robust mean variance efficient portfolios spanned by
pruned AP-Trees (10 portfolios), triple sorts, and XSF (market and the three cross-section-specific characteristics) with respect
to the five Fama-French factors. The SDF based on triple sorts is relying on either 32 or 64 assets and considers mean and
variance shrinkage. Cross-sections are sorted by the SR achieved with AP-Trees (10).

Figure C.5: Out-of-sample SDF alpha t-statistics, based on the FF11-factor model
(market + 10 long-short factors) for 10 characteristics
SDF alpha t-statistics calculated on the out-of-sample robust mean-variance efficient portfolios spanned by different basis assets.
The SDFs are constructed as in Figure 11. The pricing errors are calculated with respect to all 11 factors.
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(a) Sharpe ratios of AP-Trees (40) with time-varying SDF weights

(b) Sharpe ratios of triple sorts (64 portfolios) with time-varying weights SDF weights

Figure C.6: Sharpe ratios of AP-Tree (40) and TS (64) SDFs with rolling window esti-
mates of portfolio weights
The top figure displays the monthly out-of-sample Sharpe ratio of the SDFs of pruned AP-Trees (40 portfolios) with and without
different forms of shrinkage, while the bottom figures show the results for 64 triple-sorted portfolios. The AP-Tree portfolios
are selected on the training data and kept the same. The SDF portfolio weights for both figures are estimated on a rolling
window of 20 years; that is, we allow for time-variation in the SDF portfolio weights. The tuning parameters (mean and/or
variance shrinkage) are selected optimally on the validation data. Cross-sections are sorted by the SR achieved with AP-Trees
(40). The Internet Appendix includes additional results.
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(a) Sharpe ratios of SDFs of AP-Trees (40 portfolios) and triple sorts under cross-validation

(b) t-stat of robust SDF alpha (w.r.t. to 11 factors) under cross-validation

Figure C.7: Sharpe ratios and pricing errors of SDFs spanned by pruned AP-Trees (40
portfolios) and triple sorts under cross-validation
The figure displays the monthly out-of-sample Sharpe ratio and pricing errors of the mean-variance efficient portfolios spanned
by AP-Trees (40 portfolios) and triple sorts under three-fold cross-validation. We split the time-series into three equal blocks
and use each block as a training period and evaluate the model on the remaining two blocks. The cross-validation results report
the average over these three estimates, where the tuning parameters are selected to optimize the cross-validation results. Panel
A shows the Sharpe ratios and panel B the pricing errors relative to the 11-factor model. All the cross-sections are sorted by
the SR achieved with AP-Trees.
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Appendix C.3. Size, Profitability, and Investment

(a) Validation: Portfolio number impact (b) Validation: Mean and variance shrinkage

(c) Testing: Portfolio number impact (d) Testing: Mean and variance shrinkage

Figure C.8: SR as a function of tuning parameter during validation and testing samples
The figure shows Sharpe ratio as a function of tuning parameters for AP-Trees built on size, investment, and operating
profitability. Subplots (a) and (c) present the SR as function of the number of portfolios using the optimal mean and variance
shrinkage. Subplots (b) and (d) depict the SR as a function of mean (λ0) and variance (λ2) shrinkage for 10 portfolios. Yellow
regions correspond to higher values. Optimal validation-based tuning parameters are indicated by red dots.
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(a) Alphas of AP-Trees (10) portfolios, controlling for cross-section specific factors (XSF)

(b) Alphas of 64 triple-sorted portfolios, controlling for cross-section specific factors (XSF)

Figure C.9: Pricing errors for individual AP-Trees and triple-sorted portfolios
This figure shows the pricing errors and their significance level of 10 AP-Trees portfolios and 64 triple-sorted basis assets based
on size, profitability, and investment. Subplot (a) presents the pricing errors for AP-Trees and subplot (b) for the triple sorts
relative to the cross-section-specific factors (XSF) with significance levels (candlestick=5%, dashed line=1%, box=10%). The
portfolio ID for triple sorts denotes the quantile for (LME/OP/INV).
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(a) Portfolio 1: The Market (id

1111.1)

(b) Portfolio 2: Medium Size (50–
75%) (id 1111.121)

(c) Portfolio 3: Bottom 50% on Oper-
ating Profitability (id 1111.1)

(d) Portfolio 4: Bottom 50% on
Investment, bottom 25% on Size (id
3111.11111)

(e) Portfolio 5: Bottom 50% on
Investment, top 50% on Operating
Profitability, bottom 50% on Size (id
3211.1121)

(f) Portfolio 6: Bottom 50% on Size,
bottom 25% on Operating Profitability
(id 1221.1111)

(g) Portfolio 7: Bottom 25% on Oper-
ating Profitability, bottom 50% on Size
(id 2221.11111)

(h) Portfolio 8: Top 12.5% on
Investment, bottom 50% on Size(id
3331.12221)

(i) Portfolio 9: Bottom 50% on Oper-
ating Profitability, bottom 50% on Size,
bottom 25% on Operating Profitability
(id 2122.11111)

(j) Portfolio 10: Top 50% on Invest-
ment, bottom 50% on Size, Top 25% on
Investment (id 3133.12122)

Figure C.10: AP-Tree (10) portfolios for Size, Investment, and Operating Profitability
The graphs highlight the composition of the 10 AP-Tree portfolios in the characteristic space. The tree node id reflects the
order, direction, and number of splits (first set of numbers is the characteristic order for the nodes, and the second set the
direction and number of splits). 58


